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ABSTRACT
The last decade has seen power consumption move from an
afterthought to the foremost design constraint of new super-
computers. Measuring the power of a supercomputer can
be a daunting proposition, and as a result, many published
measurements are extrapolated. This paper explores the
validity of these extrapolations in the context of inter-node
power variability and power variations over time within a
run. We characterize power variability across nodes in sys-
tems at eight supercomputer centers across the globe. This
characterization shows that the current requirement for mea-
surements submitted to the Green500 and others is insu�-
cient, allowing variations of up to 20% due to measurement
timing and a further 10-15% due to insu�cient sample sizes.
This paper proposes new power and energy measurement
requirements for supercomputers, some of which have been
accepted for use by the Green500 and Top500, to ensure
consistent accuracy.
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With power requirements for supercomputers soaring and
becoming the main limiters of system performance, quantify-
ing, comparing and analyzing the e�ciency of supercomput-
ers has never been more important nor more di�cult. The
extreme and constantly expanding scale of systems, both in
number of components and in power draw, makes taking full-
system measurements infeasible for many sites. As a result,
most reported power and energy measurements of supercom-
puters, such as those published by the Green500 [7] and the
Top500 [22], are based on performance measured for a full
run across the entire system, but power measured only on
subsets of a system and potentially a subset of the runtime.
The accuracy and comparability of the resulting measure-
ments is highly dependent on the measurement methodology
and the degree to which the subset of the system behaves,
on average, in the same way as the full system.

A common set of requirements has been defined by the
Energy-E�cient HPCWorking Group (EE HPCWG) power
measurement methodology [5] that is used by the Green500
and Top500 lists. The methodology defines three measure-
ment levels providing di↵erent accuracies, with Level 1 the
lowest and Level 3 the highest. In an ideal world, all mea-
surements would use Level 3, but its high level of accuracy
also requires a precise, comprehensive and sometimes pro-
hibitively expensive measurement infrastructure. Instead,
the most achievable measurement level, Level 1, is the most
commonly used methodology. Of the 267 submitted mea-
surements on the November 2014 Green500 list, 233 sub-
missions used power estimates based on derived numbers
rather than measurement, 28 used Level 1, and only 6 used
a higher measurement level. With the vast majority of ac-
tual measurements using Level 1, its accuracy and compa-
rability are extremely important to the value of the data
collected by both of these lists as well as any others that use
the methodology.

During the development of the methodology, an inter-node
variance of up to 5% was expected, and had been shown to
be normal variation for computers at the time [11]. Recently
however, di↵erent measurements of the same system using
the Level 1 methodology have been found to vary by more
than 20% [16, 4]! This variability has significant ramifica-
tions for Green500 rankings. For instance, the advantage of
the current 1st ranked system over the current 3rd ranked
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system is less than 20%. At SC ‘13 and SC ‘14 BoF sessions,
there were presentations that showed variations of 10% and
20%, respectively, due to usage of di↵erent measurement in-
tervals. These findings demonstrate the significance of the
improvements to the measuring methodology suggested in
this paper.

There are two primary sources of variation in the mea-
surements: variation in the power consumed over time, and
variation of the power consumed by individual components
in the subset measured. Both have grown in relative size
lately. The variation over time is a side e↵ect of modern,
fast, heterogeneous systems, which do not achieve a con-
stantly high utilization of their peak compute capability.
This is addressed in Section 3.

Variability of components has numerous causes. One is
variability in the manufacturing process, where the amount
and location of imperfections in the substrate or circuit
paths themselves result in di↵erent amounts of leakage, and
thus di↵erent e�ciency levels. A recent trend is that hard-
ware vendors adapt their hardware better, both to these
fluctuations in the manufacturing process and to operating
conditions such as temperature, which leads to secondary
causes of variability. With the emergence of heterogeneous
clusters, understanding variability becomes even more com-
plicated. Section 5 sheds light on two examples: “identical”
GPU boards that the same clock speed but di↵erent pro-
grammed voltage IDs; and automatic fan speed regulation,
which a↵ects power consumption. The turbo modes of mod-
ern CPUs and temperature are other reasons. A detailed
analysis of the sources of component variability should be
performed in future work.

In this paper, we analyze the sources of measurement vari-
ability and determine new guidelines for achievable and ac-
curate measurement of supercomputer power. To ensure
fairness and accuracy in the published measurements, these
new guidelines on minimum node count and measurement
period are being integrated into the submission requirements
for the Green500 and Top500 lists.

With the suggested methodology, sites can determine how
many components or nodes must be measured in order to
characterize system-level power with reasonable accuracy.
Even sites with system-level power measurement capabili-
ties tend not to reserve a full machine for post-acceptance
benchmarking, and instead run on a subset of the system and
extrapolate. Other use cases of system-level power charac-
terizations include architectural trending, system modeling
(design, selection, upgrade, tuning, analysis), procurement,
operational improvements and power capping. Our guide-
lines also serve as instructions for extrapolating Total Cost of
Ownership (TCO) from smaller test systems during procure-
ment or initial testing phases. In particular, the observed
variations of 20% in power consumption lead directly to a
possible 20% increase in electricity costs, which nowadays
are a significant contribution to the TCO. Hence, a higher
accuracy is desirable.

We start by presenting background on the currently rec-
ommended measurement methodology and related work in
Section 2. We present results and analysis of power vari-
ability in a workload across time in Section 3 and analysis
of inter-node power variability in Section 4. In Section 4.2,
we analyze the node power consumption variations of several
large-scale systems and derive a recommended node subset
size to perform reasonably accurate full-system power con-

sumption extrapolations. GPUs have been becoming more
and more important in the HPC sector in recent years. Sec-
tion 5 presents case studies of GPU results on the L-CSC [16]
and Titan clusters in order to examine the validity of our
approach for systems with GPUs. Lastly we present our
final suggestions and conclusions in Section 6.

2. BACKGROUND
This section provides related work along with a descrip-

tion of the current EE HPC WG power measurement method-
ology.

2.1 Related Work
For energy-e�ciency benchmarks to provide fair compar-

isons between systems and to illuminate architectural trends,
they need to provide standard methods of measuring system
power. At the single-node level, the Standard Performance
Evaluation Corporation (SPEC) benchmarks provide a pre-
cise and widely used set of rules for measuring system power
during the execution of a workload. These methods were ini-
tially developed for the server-oriented SPECpower bench-
mark [20] but have since been added to the SPEC OMP2012
[15] and SPEC ACCEL [13] suites. The SPEC methodology
provides reliably accurate power and performance measure-
ments, but at the cost of requiring the use of their software
and a pre-vetted set of high-quality meters. This approach
gives terrific accuracy where it is practical, but does not
scale well to supercomputing, where several distributed me-
ters are often required to measure even a significant subset
of a system.

By contrast, power measurement methodologies appropri-
ate for large-scale systems running a specific workload are
still evolving. Fully instrumenting all nodes is still imprac-
tical at most facilities [11, 19] or can lack accuracy [9]. Hsu
describes the di↵erent possible levels of instrumentation [12].

Several HPC benchmarks currently include power mea-
surements (optional or required). The Green500 [7], which
uses High-Performance Linpack (HPL) as its workload, uses
energy e�ciency in the form of FLOPS/Watt as the met-
ric of comparison to rank the fastest supercomputers in the
world by their energy e�ciency. Its floating-point performance-
oriented counterpart, the Top500 [22], also accepts power
measurements, representing how e�cient the supercomputer
is when running at full performance. The Green Graph
500 [8] and Graph500 are analogous benchmarks with graph
analysis as the workload of interest. Half of the Green500
power results are actually based on vendor specifications
and extrapolation rather than physical measurements [19].
These derived numbers still fill in gaps in the list today for
the sites that choose not to measure their power consump-
tion. The Green500 rules needed to evolve in order to make
the measurement of systems achievable for sites with low
to average instrumentation, leading Subramaniam [21] to
recommend extrapolation from measuring a subset of the
system, an approach also favored by Kamil [14].

Even when all nodes of the system are identical, the well-
documented manufacturing variation across processors [1,
17] means that a subset of nodes may not accurately repre-
sent the system as a whole. However, very few studies have
rigorously examined the loss in accuracy from extrapolating
power measurements from a subset of nodes [11].

Other approaches to this question come from prior work
in large-scale power modeling, which has examined the ques-



tion of how large a system subset must be used to train a
power model. Fan was able to extrapolate coarse-grained
power models from a single node for lightly used servers,
but only after adding a large constant o↵set to account for
variation in idle power and for networking components [6].
Davis [3], in the only study to apply statistical methods
to this question, demonstrated that node-to-node variation
can significantly a↵ect the accuracy of power models for four
small clusters running data-intensive workloads. They pro-
pose using a very conservative Cherno↵-Hoe↵ding bound to
select the subset size, and they note that their workloads
are not homogeneous, with substantial di↵erences in nodes’
average power. For regular workloads (i. e. balanced equally
across all nodes), such as HPL, we find that a much less
conservative bound is su�cient to produce highly accurate
estimates of full-system power consumption.

2.2 Measurement Methodology
The EE HPC WG power measurement methodology [5]

has been adopted by the Green500 and Top500 as a common
baseline for measurement requirements. It defines three lev-
els of measurement quality, each of increasing accuracy but
also increasing di�culty to use at large scale. Each level
defines di↵erent requirements for each of four aspects of the
measurement:

1. Measurement duration and granularity

2. How much of the system is measured

3. Which subsystems must be included in the measure-
ment

4. Where in the power hierarchy the measurements may
be taken

In the following paragraphs, we give a brief outline of some
aspects of the current methodology, which Table 1 summa-
rizes. One goal of the Level 1 specification was to encourage
more people to measure the e�ciency of their systems and
participate in rankings such as the Green500. In order to
make it approachable, the requirements for the measurement
equipment had to be low. Level 1 measures the performance
of only the core phase of a benchmark: that is, the time pe-
riod in which the actual computation of the benchmark hap-
pens. It does not include setup and tear-down time. Within
the core phase of the Linpack benchmark, traditional HPC
systems have shown a quite flat power consumption over

time (see next section). There are usually some variations
at the very beginning (for instance because of warming up
of hardware components) and at the very end (where, in the
case of Linpack, the remaining matrix size becomes small).
Therefore, Level 1 requires only a measurement during 20%
of the core phase. This 20% period must be within the mid-
dle 80% of the core phase, to exclude the first 10% and the
last 10% of the time where the power profile is not flat.

A measurement of the entire facility power usually in-
cludes other components such as storage, other compute
clusters, and infrastructure. As such, it cannot be used
to get an accurate power measurement of an isolated su-
percomputer. It can be challenging to measure the power
consumption of an entire supercomputer, which can drain
several megawatts of power, on its own. Therefore, Level
1 requires a power measurement of only 1

64 of the compute
nodes participating in the benchmark and allows this mea-
surement to be scaled up linearly to approximate the full-
system power. In order to achieve a certain level of accu-
racy for low-power nodes, the methodology requires at least
2 kW of power to be measured. To simplify the measure-
ment, Level 1 does not require the inclusion of secondary
infrastructure, like the network or the infrastructure nodes.

It is not clear whether these requirements for the mea-
surement will be suitable in the future. In order to enable
measurements of higher accuracy, the current methodology
specifies two additional levels with higher requirements. The
main di↵erences are that Level 2 and 3 both require a mea-
surement during the entire core phase of the run, they re-
quire a measurement of a larger fraction of compute nodes
( 18 for Level 2 and all nodes for Level 3), and they require all
required infrastructure components (everything that cannot
be switched o↵ for the benchmark run) to be measured or
estimated.

Scogland [19] presents data at the di↵erent levels for a
few real-world supercomputers, and shows that the Level
1 and Level 2 methodologies can significantly overstate a
system’s energy e�ciency. However, because the three levels
of measurement di↵er in more ways than the size of the
system subset being measured, it’s not clear from that work
how much of the di↵erence between levels has to do with the
question of extrapolation alone. We have since found that
the both the measurement phase and the machine fraction,
as well as subset selection, play key roles in measurement
accuracy. Each of these will be discussed in greater detail in
the following sections.

Table 1: Summary of the EE HPC WG methodology’s requirements by quality level

Aspect Level 1 Level 2 Level 3

1a: Granularity One power sample per second One power sample per second Continuously integrated energy
1b: Timing The longer of one minute or 20%

of the middle 80% of the core
phase of the run

Ten equally spaced power av-
eraged measurements spanning
the full run

Continual measurement across
the full run

2: Machine

fraction

The greater of 1/64 of the com-
pute subsystem or 2 kW

The greater of 1/8 of the
compute-node subsystem or
10 kW

The whole of all included sub-
systems

3: Subsystems Compute nodes only All participating subsystems, ei-
ther measured or estimated

All participating subsystems
must be measured

4: Point of

measurement

Upstream of power conversion
or modeled with manufacturer-
supplied data

Upstream of power conversion
or modeled with o↵-line mea-
surements

Upstream of power conversion
or conversion loss measured si-
multaneously



HPL Core phase First Last
runtime power (kW) 20% 20%

Colosse 7 hours 398.7 398.1 398.2
Sequoia 28 hours 11,503.3 11,628.7 11,244.2

Piz Daint 1.5 hours 833.4 873.8 698.4
L-CSC 1.5 hours 59.1 63.9 46.8

Table 2: Runtime and average power in kilowatts for di↵er-
ent segments of each HPL test run

3. POWER VARIABILITY OVER TIME
The first source of measurement variability we will discuss

comes from the portion of a workload run that is sampled. In
previous years, the Green500 list and others have advocated
measuring as little as 20% of the middle 80% of the core
phase of the run, partly in order to support measurements
on runs of great length or with minimal equipment. Figure 1
shows the average power over time for HPL on four systems,
along with a table of segment averages in Table 2.

On the most “traditional” of these designs, the Colosse
system, the HPL run is over 7 hours long and yields a very

flat power curve, with the set-up and tear-down time al-
most completely lost in the overall runtime. The absolute
numbers bear this out: the average measurements for the
entire core phase, the first 20% of the run, and the last 20%
of the run are all within 0.25% of one another. No matter
what segment of the core phase is measured, the extrapo-
lated power is a close match for the actual average over the
full run.

Sequoia – actually Sequoia-25, a temporary combination
of the Sequoia and Vulcan systems at LLNL – is by far the
largest system in the group, consisting of nearly 2 million
cores. Its runtime is typical of HPL runs for large-scale
CPU systems, in that it runs for over 28 hours in total.
The pattern appears more jagged, but still largely flat. The
numbers show a slightly larger variation than Colosse, with a
di↵erence of approximately 3.5% between the average power
of the first 20% and the last 20% of the core phase. Based
on these results, a subset approach is reasonable assuming
that the workload is balanced and consistent as with those
tested.

Moving on to the heterogeneous CPU/GPU systems tells
a di↵erent story, however. Piz Daint, of the Swiss National

(a) Colosse (b) Sequoia

(c) Piz Daint (d) L-CSC

Figure 1: System average power over time for Linpack (Data taken from public data published by the Green500 list on
green500.org)



Supercomputing Centre, is more indicative of an average
heterogeneous system run. As one of the longer GPU HPL
runs listed by the Green500, the Piz Daint run is still only
about 1.5 hours long, and visibly more jagged and sloped
than either of the CPU-only systems discussed above. In
fact, the di↵erence between an average over the first 20% and
last 20% of the core phase is more than 20%! In-core HPL,
which is the version favored for NVIDIA GPU-based sys-
tems, uses only the GPU memory to store the matrices, and
thus necessarily runs in less overall time than the CPU sys-
tems, which tend to fill main memory. Taken to the extreme,
some runs have been as short as five minutes on systems
large enough to qualify for the Top500. Equally extreme is
the data from the current #1 system on the Green500, the
L-CSC cluster, which shows a first 20% average power of
63.9 kW and a last 20% of core phase average of only 46.8
kW. Based on the current requirements, a measurement for
this machine could also vary by over 20%.

The fact that the power of an HPL run tails o↵ as the
matrix shrinks near the end of the run, especially on GPU
systems, has been exploited to achieve better-looking re-
sults before. The TSUBAME-KFC cluster yielded a 10.9%
reduction in its power consumption measurement for the
Green500 in November 2013 by selecting an “optimal” time
interval [4]. Rohr et al. [16] have shown that the L-CSC clus-
ter would have been able to submit a result with 23.9% im-
proved power e�ciency to the Green500 in November 2014
by tweaking the time interval.

Another potential cause of power variation over time is dy-
namic voltage and frequency scaling (DVFS), which many
computers use to improve their operational e�ciency. The
L-CSC cluster could reach a 22% improvement in energy ef-
ficiency in the Linpack benchmark through DVFS [16]. In
fact, the current methodology specification explicitly allows
DVFS for this reason. However, this leads to an obvious
problem when the power measurement does not cover the
entire core phase. The power consumption will usually be
lowest during the period where DVFS selects the lowest pro-
cessor voltages. By placing the power measurement inter-
val in this period, the power measurement could completely
avoid the period where the processor runs at higher frequen-
cies and drains more power.

Given this issue, e↵ectively a way to“game the system,”as
well as the lack of generalizability to workloads with more
complex patterns, we recommend ensuring that all power
measurements are taken for the full period of the core phase
of a given workload. This means the power measurement
should cover exactly the time period that is used to mea-
sure the performance, and preferably include a number of
measurements before and after as well. While this may pre-
clude measurements with some equipment options or of some

runs of su�cient length, the variability caused by allowing
a shorter period makes the results unreliable.

4. INTER-NODE POWER VARIABILITY
In cases where it is infeasible to measure power consump-

tion across a complete supercomputer, a practical alterna-
tive is to estimate power consumption by measuring a ran-
dom sample of nodes. How many to measure, however, is
not entirely straightforward.

For example, the current Level 1 methodology requires
that at least 1/64 of a supercomputer’s nodes be measured.
This methodology can produce power estimates with dra-
matically lower accuracy for small supercomputers compared
to large supercomputers. Supercomputers can range from
only a few hundred nodes to tens of thousands, depending
on the configuration. Those discussed later in this paper run
from 210 to ⇠ 19000 for example, a gap of nearly two orders
of magnitude. For a hypothetical supercomputer with 210
nodes and a true value of �/µ = 2% (where µ is the mea-
sured average power consumption, and � is the standard
deviation of the measurement), the Green500 methodology
would require at least 4 nodes to be measured. Based on
4 nodes, we would be able to say with 95% certainty that
our estimate of the total power usage is within 3.2% of the
true total. In contrast, for a supercomputer with 18,688
nodes and �/µ = 2%, the Green500 methodology would
recommend that at least 292 nodes be measured. From a
sample of 292 nodes, we would be 95% certain that the esti-
mated power usage is within 0.2% of the true total. That is,
although both supercomputers have the same relative vari-
ability, this methodology produces a sample that is an order
of magnitude less accurate on the smaller supercomputer.

4.1 Experimental Results
To gain insight into the node variability of current sys-

tems, we conduct a study across six large-scale systems lo-
cated at Technische Universität Dresden, Calcul Québec,
the French Alternative Energies and Atomic Energy Com-
mission (CEA), the Leibniz Supercomputing Center (LRZ),
and Oak Ridge National Laboratory (ORNL) see Table 3.
Each system ran a balanced workload high in floating-point
computation, and power was measured on each node indi-
vidually.

A histogram of the per-node power results is presented in
Figure 2. While the range and counts di↵er for each system,
the distributions remain relatively similar, even across the
GPUs in the ORNL results. All systems show power dis-
tributions that are roughly unimodal with few outliers, sug-
gesting that it may be appropriate to model these distribu-
tions as Gaussian. Given the assumption that the per-node
power consumption is approximately normally distributed,

Table 3: Test systems

CPUs RAM components workload
per node per node measured

Calcul Québec 2x Intel X5560 24 GiB 480x2 nodes HPL
CEA (Fat) 4x Intel X7560 16x4 GiB 316 nodes HPL

CEA (Thin) 2x Intel E5-2680 16x4 GiB 640 nodes HPL
LRZ 2x Intel E5-2680 32 GiB 512 nodes MPrime [18])

ORNL 1x AMD 6274 32 GiB GPUs in 1000 nodes Rodinia CFD [2])
TU Dresden 2x Intel E5-2690 8x4 GiB 210 nodes FIRESTARTER [10]



we can construct a statistical basis for the number of nodes
that must be sampled to produce a given confidence in the
final result. This assumption is unlikely to be met in the
general case, where computational load may be distributed
unevenly between nodes. However, for the case of balanced
workloads as in these benchmarks, we find that the assump-
tion of a normal distribution is appropriate. We there-
fore proceed upon the assumption of approximate normality,
with the caveat that this methodology will not be appropri-
ate in scenarios where the distribution of per-node power
consumption contains many outliers or is heavily skewed.

Based on our sample data, we provide a formula for the
necessary number of nodes in a sample in order to obtain a
selected level of accuracy. Consider a supercomputer with N
nodes with a true per-node mean power consumption of µ.
Suppose we select a subset of n nodes at random, measuring
time-averaged power consumption on each of these n nodes.
Denoting these measurements by X1, . . . , Xn, a reasonable
estimate of the true mean µ over all nodes is the mean of the
measurements of the sub-sample, or µ̂ = 1

n

Pn
i=1 Xi. From

this sample, we will be able to make a statement that with
(1�↵)⇥100% certainty, the di↵erence between µ̂ and µ is at
most � ·µ. What values of ↵ and � are “reasonable” depends
a great deal on perspective, but a common baseline is to use
confidence level (1�↵) = 95%, and accuracy � = 1%, which
would allow a statement with 95% certainty that an estimate
of the per-node power consumption is o↵ by no more than
1%.

So long as the per-node power usages are approximately
normally distributed and n is small relative to N , a given
confidence interval for the mean can be calculated based on
�̂, the sample standard deviation, and tn�1,1�↵/2, or the
1� ↵/2 quantile from a t distribution with n� 1 degrees of
freedom:

CI = µ̂±
tn�1,1�↵/2 · �̂p

n
, (1)

For large values of n (e.g. n � 20), we can approxi-
mate quantiles from a tn�1 distribution with quantiles from
a standard normal distribution, where z1�↵/2 is the 1�↵/2
quantile from a standard normal distribution. So for large
n an approximate confidence interval is given by:

CI ⇡ µ̂±
z1�↵/2 · �̂p

n
, (2)

Translated into a restriction on sample size, we want to
choose n so that the confidence interval half-width is no
more than � ·µ, where µ is approximated with the estimated
sample mean µ̂.

z1�↵/2 · �̂p
n

 � · µ. (3)

Solving for n then yields the general formula:

n �
✓
z1�↵/2

�
· �̂
µ̂

◆2

. (4)

This can be further refined to reduce the requirement that
the sample size n be small relative to the total number of
nodes N . In this case we can introduce a finite population
correction into the initial formula for the confidence interval.
Carrying this finite population correction through the same
logic yields a two-step procedure for providing a sample size
recommendation:
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Figure 2: Histograms of whole-node power under load across systems



Table 4: Comparison of four supercomputers. Columns in the table: N , the total number of nodes (or blades in the case of
Calcul Québec); µ̂, an estimate of the mean per-node (or per-blade) power usage in Watts; �̂, an estimate of the standard
deviation of the per-node power usages; �̂/µ̂, the ratio of those two estimates.

Nodes/Blades (N) Sample mean (µ̂) Std. deviation (�̂) �̂/µ̂
Calcul Québec 480 581.93 11.66 2.00%

CEA (Fat) 360 971.74 19.81 2.04%
CEA (Thin) 5040 366.84 10.41 2.84%

LRZ 9216 209.88 5.31 2.53%
Titan 18688 90.74 1.81 1.99%

TU-Dresden 210 386.86 5.85 1.51%

n0 =

✓
z1�↵/2

�
· �̂
µ̂

◆2

n =
n0N

n0 +N � 1
.

(5)

First we compute n0, the minimum required sample size
if N were infinite, and then adjust this downward based on
the true value of N .

4.2 Generalizing the Requirements
The sample size recommendations in Equation 5 rely on

known values for five parameters: N (the total number of
nodes), ↵ (a function of desired confidence), � (the desired
accuracy), �̂ (sample standard deviation), and µ̂ (sample
mean power consumption). While N is known in advance
and ↵ and � may be selected based on the desired accuracy,
�̂ and µ̂ are unknown without sampling. This leads to a
paradoxical situation in which a sample must be taken in
order to determine an appropriate sample size. Depending
on the context for wanting to determine a sample size, it
may be reasonable to simply take a small initial sample (e. g.
of n = 10 nodes) to obtain estimates of µ and � in order
to determine an appropriate size for a final sample. As a
requirement for the EE HPC WG methodology, requiring
a sample to determine sample size is impractical both to
implement and to check. An alternative is to estimate the
ratio �̂/µ̂ by examination of similar systems.

Table 4 provides details of estimates of �̂ and µ̂ on the four
test systems discussed in Section 3. Although the absolute
mean power usage di↵ers substantially between systems, all
four have estimated values of �/µ that fall approximately
within the range 1.5% � 3%. The GPU-based system L-
CSC presented in Section 5), as a second GPU system apart
from the Titan cluster, shows an even lower variability �̂/µ̂.
This a�rms our assumption that 1.5%� 3% holds valid for
GPU-based systems as well as traditional CPU systems.

Equation 5 shows that, for cases where N is far greater
than n, the adjustment factor n/n0 is close to 1. In other
words, the required sample size depends mostly on � and
�̂/µ̂ and only marginally on the total population size. Hence,
we can obtain a sample size n for a reasonably large clus-
ter N , and then use that sample size for all clusters. Con-
sequently, that increases the achieved accuracy for smaller
systems slightly.

Finally, we can translate our recommendations into a table
of sample sizes for various values of the parameters. Table 5
shows recommended sample sizes for di↵erent values of � and
of �/µ, fixing ↵ at a conventional 0.05, for a 95% confidence
interval, and N at a conservative value of 10,000. Given the

values we have seen in practice, a �/µ of 0.028 is the high-
est we found, and the standard variance of power measure-
ment equipment of 1-1.5%, a measurement of 16 nodes or
more may be reasonable. For purposes that require tighter
bounds, as many as 370 may be needed, or as few as four, but
until attempting to reach accuracy below 1% the required
values remain reasonable.

These sample size recommendations rely on an assump-
tion that the distribution of per-node power consumption in
each system is normally distributed. In fact, visual inspec-
tion of the distributions in Figure 2 reveals the presence of
outliers in several of the systems that are of a larger mag-
nitude than we would typically see arising in truly normal
data. We should check for all the available data that any vi-
olations of normality are small enough that the sample size
determination procedure is still valid. In generalizing these
recommendations, we will need to assume that any other
tests being run are on su�ciently similar systems with sim-
ilar workloads so that normality is not badly violated.

We performed bootstrap re-sampling to confirm that vi-
olations of true normality in each of these systems did not
impact the calibration of confidence intervals. For each of
our five data sets, we performed a simulation study wherein
we simulated new data from the observed empirical distribu-
tion and repeatedly estimated the mean from subsamples of
the simulated data. Specifically, we repeated the following
procedure 100,000 times for a range of sample sizes n:

1. Simulate a complete supercomputer of N nodes by re-
sampling with replacement from the collection of nodes
observed in the real data.

2. Generate a sample of n nodes by sampling without
replacement from the full simulated supercomputer.

3. Using the formula in Equation 1, obtain a mean esti-
mate along with 80%, 95%, and 99% confidence inter-
vals from the sample.

4. Check whether the confidence intervals contain the
true mean power usage for the full N nodes.

Table 5: Table of recommended sample sizes for a system
with N = 10000 nodes

�/µ
0.02 0.03 0.05

�

0.5% 62 137 370
1% 16 35 96
1.5% 7 16 43
2% 4 9 24



Results of these simulations for the LRZ data are plot-
ted in Figure 3. If the normality assumption is approxi-
mately right and/or the sample size n is su�ciently large,
this should be a well calibrated procedure. That is, an 80%
confidence interval from the above procedure should contain
the true mean power usage (of the simulated complete data)
80% of the time. These simulations show good calibration
even as low as n = 5.

Based on these simulations, for any sample of size n �
3, violations of the normality assumption don’t cause mis-
calibration of 80%, 95%, or 99% confidence intervals. Simu-
lation studies on the other systems reveal that the normal-
ity assumption is appropriate for all systems we have tested,
with good calibration as low as n = 5 on all systems.

Although the normality assumption is appropriate for small
n, a separate issue is that in producing recommended sample
sizes, we propose to approximate the t-quantile tn�1,1�↵/2

with the normal quantile z1�↵/2. This approximation causes
slight under-coverage at small values of n. For example, for
samples of size n = 15, approximating the t quantile with a
normal quantile will produce 95% confidence intervals which
are roughly 9% too narrow.

5. AN OUTLOOK TO SOURCES OF NODE
VARIABILITY ON A GPU CLUSTER

The subset sample size analysis in the previous section is a
statistical method to cope with node variability. In addition
to coping with it, investigating and eliminating the sources
of node variability can improve the accuracy of power mea-
surements and also the energy e�ciency of a system in some
cases. Hence, in addition to the mere fact of variability be-
tween nodes, we are also interested in the sources of that
variability. Section 3 presented some CPU systems and one
GPU system. This section presents a case study of a multi-
GPU system very di↵erent from the one in Section 3 to gain
insight into the causes of variability. We did not include the
results presented here in the earlier sample size analysis, due
to a necessarily small sample size for results on this system.
All experiments in this section are derived from an OpenCL

version of the Linpack benchmark on the L-CSC (Lattice
Computer for Scientific Computing) cluster [16]: A multi-
GPU cluster installed at GSI research facility featuring four
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Figure 3: Coverage of 80% (green), 95% (blue), and 99%
(red) confidence intervals in simulation studies based on the
pilot sample of 516 nodes of the LRZ supercomputer. Solid
lines show the simulated coverage while dashed lines show
the target coverage. Each data point on this plot is calcu-
lated from 100,000 simulations of samples from a simulated
full supercomputer.
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GPU Voltage-ID [V]

Clock = 774 MHz, Fixed Voltage V = 1.018V

Clock = 900 MHz, Standard Voltage V = VID
Clock = 900 MHz, Standard Voltage V = VID,
Power corrected for higher fan speed

Figure 4: Power e�ciency of individual nodes achieved in
single-node Linpack on Lattice-CSC cluster.

AMD FirePro S9150 GPUs per node. With four GPUs per
node, the GPUs are the main contributor to both perfor-
mance and power consumption. This makes the L-CSC sys-
tem quite distinct from the CPU-based supercomputers dis-
cussed in the previous sections and also from the Titan GPU
cluster, which features only 1 CPU and 1 GPU per node.

Power e�ciency depends to a great deal on the frequency
and voltage selected for the GPUs. Best e�ciency is achieved
with the minimum voltage that ensures stable operation at
a given frequency. Every GPU ASIC behaves a bit dif-
ferently, so vendors program Voltage-IDs (VIDs) into the
ASIC, which define su�cient voltage for a given frequency
for that specific ASIC. For consistency, we ensure that all
four GPUs in a node have the same VID value.

L-CSC used dynamic frequency and voltage scaling to
obtain the best power e�ciency for its Green500 submis-
sion [16]. For the Green500 run, the GPUs were not oper-
ating at the voltage defined by their VIDs. Instead, a com-
prehensive search of the frequency and voltage space found
that the most e�cient frequency for Linpack on L-CSC is
774MHz, and the lowest stable voltage at this frequency is
1.018V.

The other major source of variability noticed at the node
level is the system fans, which vary by more than 100W de-
pending on the current temperature and load. By default,
system fans are regulated automatically, and cause larger
variances in power e�ciency than the actual CPU/GPU
variability. To control for this variability, in all tests we
have fixed the fans of all nodes to the lowest speed that
maintains the thermal limits.

Figure 4 shows the power e�ciency achieved in single node
Linpack on several nodes of L-CSC, classified by the GPUs’
VIDs on the x-axis. The figure presents two measurements:
one with fixed ASIC settings of 774MHz and 1.018V (ig-
noring the VID) and one with default settings of 900MHz,
where the voltage is defined by the VID. For the 900MHz
settings we used faster fan settings to remain in thermal
limits. We have measured the di↵erence in fan power con-
sumption, and we add a third dataset to the figure, which is
derived from the 900MHz test but corrected for the higher
power consumption due to the higher fan speed. Since the
o↵set due to fan speed is constant, both curves have the same
slope which shows the variability of the GPUs: by trend, the
GPUs with higher VID, and thus higher voltage, drain more
power and are less e�cient. However, it is obvious that the
e↵ect of the fans is much larger.



We draw the following conclusions from the figure:
• The standard deviation of the power e�ciency of the

most e�cient configuration is 1.2% and is thus smaller
than the deviations for the CPU systems and the Titan
GPU system in Table 4). Considering Titan and L-
CSC, we don’t see any evidence that we should expect
GPU systems to have more node-to-node variability
than CPU systems.

• Among all the presented systems, L-CSC has the low-
est variability among the nodes. Although we did not
analyze this in su�cient detail, there is strong indi-
cation that this is due to the additional measures we
have taken for L-CSC, to mitigate the sources of node
variability., i. e. fixing voltage and fan speed.

• Surprisingly, the e�ciency in the most e�cient config-
uration with identical voltage is unrelated to the VID.
We had expected that even though we had fixed the
voltage to the same level, the VID would still have an
influence, as it classifies the quality of an individual
ASIC. This does not seem to be the case.

• The power variability due to the di↵erent fan speeds
is many times more significant than the variability of
the GPUs themselves.

• Running at the default settings, the nodes with higher
VID are slightly less e�cient than those with lower
VID. The di↵erences are small but there is a clear
trend. This is in complete concordance with our expec-
tations, as the GPUs with higher voltage drain more
power.

• It is possible to screen processors (CPUs and GPUs)
via software for the ones with the lowest VIDs. In
this way, if the voltage is not fixed, by measuring only
nodes with low VID, it is possible to obtain a favorably
biased e�ciency result.

This case study shows that the suggested sample size from
the previous section yields an accurate measurement for the
GPU cluster L-CSC. This a�rms that our approach is valid
for GPU clusters as Titan and L-CSC as well. However, we
want to examine more GPU clusters in the future in order
to confirm this claim.

On top of the sample size suggestions, the case study
yields two additional suggestions how sources of node vari-
ability can be mitigated.

• The fans of all nodes should be pinned to the same
speed. This has a larger influence than processor vari-
ability.

• If possible, one should scan for processors with middle
VIDs and use such processors for the measurement.

We will have to examine the applicability of these two
recommendations in real-world situations. Depending on the
possibilities to manage fan speeds and to read out VIDs, the
suggestions can be hard or impossible to follow. In addition,
we will examine further sources of variability and confirm
these conclusions by repeating the case study on di↵erent
systems.

6. CONCLUSIONS AND NEXT STEPS
Power consumption measurements for large-scale HPC sys-

tems present a significant technical challenge. In this paper
we have evaluated the current requirements imposed on ex-
trapolating full-system measurements from reference subsets
of the nodes and the runtime of a workload. The pivotal
questions concern the required length of the measurement

and the required size of the reference subset.
By analyzing the power profiles of four supercomputers

running Linpack, we find that the variation in power con-
sumption in di↵erent phases of the run has greatly increased
with recent system designs. What originally was a source
of up to 3% error has now been shown to be higher than
20% in multiple cases, which we consider unacceptable. We
conclude that the only sensible alternative is to require the
measurement of the entire core phase of the workload under
test.

To evaluate inter-node power variability we present bench-
mark results from balanced, floating-point intensive work-
loads run on six large-scale systems with at least 200 nodes.
The power distribution has proved to be near-normal for all
systems tested. Based on this finding, we then used a sta-
tistical approach to determine the subset size (node count)
that is required to do an extrapolation that yields the re-
quired accuracy (e.g., 1.5%) with a desired certainty (e.g.,
95%).

Our approach requires knowledge of the quotient of power
measurement standard deviation and per-node power con-
sumption, which we extrapolate to be approximately within
the range 0.015–0.025 based on our analysis. Assuming a
conventional 95% confidence interval, we find a measure-
ment of at least 11 nodes to be reasonable even for very
large systems. Our overall recommendation is to require
that 16 nodes be measured, or 10% of nodes, whichever is
larger. This matches the requirement to reach our desired
confidence interval with one level greater overall variability
than we’re currently seeing in practice. We also recommend
that all submissions include an assessment of their measure-
ment accuracy.

Our recommendation is based on data from di↵erent types
of HPC systems and covers the majority of current HPC sys-
tem types. The dataset includes Intel Xeon E5 (78.1% share,
392 systems in the Top500 Nov. 2014) and one of the largest
NVidia K20x accelerated systems (20% share of the acceler-
ated systems, Top500 Nov. 2014). Our data from the L-CSC
cluster suggests that systems accelerated by AMD FirePro
GPUs show similar behavior. Still, it would be interesting to
include more systems in the analysis in the future, especially
those with other accelerator or processor designs.

Our methods and analysis will remain valid for new large-
scale systems as long as the application under test is regular.
The specific percentage and count may shift if the level of
variability increases significantly in the exascale timeframe,
but our methods would show this and provide new baseline
requirements.

While we focus our experiments on homogeneous CPU
clusters, we found strong indications that our evaluation
holds true for GPU-accelerated systems as well. Finally, we
have presented an outlook on how the measurement method-
ology could be refined in the future to take into account
sources of node variability in order to improve the accuracy.

Our recommendations with respect to the measurement
duration and the number of nodes to measure have been
adopted by the power measurement methodology of the En-
ergy E�cient High Performance ComputingWorking Group,
which is in force for the Green500 and Top500 lists. These
recommendations will be adopted into the submission re-
quirements for each list in the late 2015 time frame. The
suggestions that emerged from our case study on the sources
of component variability (fan speed and voltage) are still too



loose to lead to a meaningful specification. These should be
analyzed in detail and refined in future work, but we assume
that they can improve power measurement accuracy in the
future.
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