
A Breadth-First Course in
Multicore and Manycore Programming

Suzanne Rivoire
Sonoma State University
March 12, 2010

Parallelism is everywhere

  Multicore: Scaling processor performance by
increasing the number of cores/chip

  Distributed/cloud/grid computing: Applications/
computations that scale to large numbers of
machines

“The free lunch is over.” [Sutter, 2005] – performance
now requires harnessing parallelism

2

When to introduce parallelism?
  In the OS course

  Traditional approach
  Has been used to teach new multicore

programming models [Rossbach, PPoPP ’10]

  Throughout undergraduate curriculum [Ernst,
ITiCSE ’08]

  Upper-level undergraduate elective
3

How to introduce parallelism?
  Lots of parallel programming APIs/models,

with new ones emerging all the time
  Typical parallel programming elective is a

graduate course focusing on a particular
(trendy, new) model

  For undergraduates, we tried breadth-first
  Avoid committing to a particular model
  Emphasize commonalities and underlying

algorithms

4

Outline
  Breadth-first course overview

  Goals
  Organization
  Structure

 Course content

  Evaluation

5

Course information
  Title: CS 385: Multicore and Manycore

Programming [elective]
 University: Sonoma State University
  Semester: Spring 2009
  Prereqs: CS2, introductory computer

organization
  Enrollment: 18 students, all undergraduate

6

By the end of this course, you will…
  Think parallel! Find task- and data-parallel

decompositions
  Analyze the performance of your code and

the barriers to scalability
 Understand developments in parallel

hardware and software
  Be better programmers in general

7

Course organization
Weeks Subject

1-2 Crash course in parallel decomposition, computer
architecture, and performance analysis

3-6 OpenMP

6-9 Intel TBB

10-14 nVidia CUDA

14-16 Readings on other programming models

8

Why these models?
  Accessible to C/C++ programmers
 Well supported, mature (enough)

infrastructure
 CPU- and GPU-based
 Different levels of abstraction

9

Course activities and assessments
  Lecture/discussion: 2 hours/week
  Lab activities: 2 hours/week supervised +

some independent work
  Projects: Optimizing matrix multiplication in

each model + 1 writing project
 Quizzes: 4 quizzes (one for each

programming model + the paper-reading)
 Comprehensive final exam

10

Outline
  Breadth-first course overview
 Course content

  Initial overview
  OpenMP, TBB, CUDA details
  Reading papers on other models

  Evaluation

11

Module 1: Overview of basics
  Lecture topics

  Overview of multicore challenges (View from
Berkeley)

  Parallel decomposition; task parallelism; data
parallelism

  Performance analysis: speedup, scalability
  Memory hierarchy, cache coherence,

synchronization

12

Module 1: Overview of basics
  Sample activities/assignments

  Parallelize this recipe!
  Practice mapping computations to threads by

“parallelizing” two embarrassingly data-parallel
algorithms

13

Module 2: OpenMP
 OpenMP background

  Simple API for shared-memory programming

  Established and widely supported (1998-)

  Support for data and (some) task parallelism

  Assignments
  Parallelize and tune code from Module 1

  Implement a data-parallel algorithm with
significant dependencies

14

OpenMP sample code
#pragma omp parallel for

for (i = 0; i < N; i++)

 a[i] = b[i] + 1;

15

Module 3: TBB
  TBB background

  Introduced by Intel in 2006
  C++ template library (very STL-like)
  High-level; hides implementation details

  Assignments
  Port previous assignments to TBB
  Use TBB’s concurrent container classes

16

TBB sample code
class some_class {

 …
 void operator()(const blocked_range
&range) const {
for (int i = range.begin();

 i!= range.end(); i++)
 A[i] = B[i] + 1;

}

};
parallel_for(blocked_range(0,N),

some_class(A, B), auto_partitioner());
17

Module 4: CUDA
 CUDA background

  Introduced by nVidia in 2007 for general-
purpose GPU programming

  Requires programmer to manage movement of
data between CPU and GPU

  Requires programmer to map computations to
threads and thread blocks on GPU

18

Sample CUDA code
kernel<<< gridDim, blockDim, 0 >>>(A, B);

__global__ void kernel(float* A, float* B) {

 unsigned int tid = blockIdx.x*blockDim.x +
threadIdx.x;

 A[tid] = B[tid]+1;

}

19

Module 5: Other models

20

  Papers read
  GPGPU: Owens et al, Proc. IEEE 5/2008.
  MapReduce: Dean et al, OSDI 2004.
  Transactional memory: Adl-Tabatabai et al,

Queue 12/06.
 Method: just-in-time teaching + discussion

  Students submit writeups shortly before class
  Their answers drive the day’s discussion

[Davis, SIGCSE ’09]

Sample just-in-time assignment
 Reading guide: roadmap of paper

  “Read the section on programming with
transactions. Understand the programming
examples and the graph. This section
describes the guarantees that a TM system
makes to the programmer, and the benefits to
correctness and performance.”

21

Sample writeup questions
 High-level comprehension:

  Explain in your own words why versioning is
needed and the difference between eager and
lazy versioning.

  Low-level:
  Explain Figure 2: what does it show, and why

does that result occur?

22

Project: Tutorial on one model
  Explain when the model is important/useful

 Guide the reader through a simple example
with some performance tuning/analysis

23

Outline
  Breadth-first course overview
 Course content
  Evaluation

  Learning objectives?
  Course structure and assignments?
  Future changes

24

Evaluation instruments
  End-of-semester survey and evaluations

 Reflections in student project reports
(throughout semester)

 Choice of model for final project

25

Good things
  Lab assignments

  Rated as most helpful component of course for 3
of the 4 learning outcomes

 CUDA
  By far the most popular model
  GPU “cool” factor? Bigger speedups? Low-level

control?
  Students preferred programming models in order

from low- to high-level
 Discussions of papers

26

Bad things
  Projects

  Limited shared hardware => flawed speedup
results and a lot of frustration

  Matrix multiplication: too staid a problem?
  TBB?

  Least popular model…hard to understand
performance, too much bureaucracy

  Worthwhile challenge to students?
  Valuable comparison point?

27

Open Questions
  Breadth-first?

  Class was evenly split between liking the
course as-is and wanting slightly more depth

  No one wanted pure depth-first (studying only
one model)

 Choice of programming models?
  New models, new infrastructure emerging
  Would keep GPU model (CUDA? OpenCL?)

but the rest is up for debate

28

http://rivoire.cs.sonoma.edu/cs385/

29

