A Breadth-First Course in
Multicore and Manycore Programming

Suzanne Rivoire
Sonoma State University
March 12, 2010

Parallelism is everywhere

Multicore: Scaling processor performance by
increasing the number of cores/chip

Distributed/cloud/grid computing: Applications/
computations that scale to large numbers of
machines

“The free lunch is over.” [Sutter, 2005] — performance
now requires harnessing parallelism

When to introduce parallelism?

In the OS course

B Traditional approach

B Has been used to teach new multicore
programming models [Rossbach, PPoPP '10]

Throughout undergraduate curriculum [Ernst,
ITICSE "08]

Upper-level undergraduate elective

How to introduce parallelism?

Lots of parallel programming APls/models,
with new ones emerging all the time

Typical parallel programming elective is a
graduate course focusing on a particular
(trendy, new) model

For undergraduates, we tried breadth-first
B Avoid committing to a particular model

B Emphasize commonalities and underlying
algorithms

Outline

Breadth-first course overview

B Goals
B Organization
B Structure

Course content

Evaluation

Course information

Title: CS 385: Multicore and Manycore
Programming [elective]

University: Sonoma State University

Semester: Spring 2009

Prereqgs: CS2, introductory computer
organization

Enrollment: 18 students, all undergraduate

By the end of this course, you will...

Think parallel! Find task- and data-parallel
decompositions

Analyze the performance of your code and
the barriers to scalability

Understand developments in parallel
hardware and software

Be better programmers in general

Course organization

Weeks Subject

1-2 Crash course in parallel decomposition, computer
architecture, and performance analysis

3-6 OpenMP
6-9 Intel TBB
10-14 nVidia CUDA

14-16 Readings on other programming models

Why these models?

Accessible to C/C++ programmers

Well supported, mature (enough)
infrastructure

CPU- and GPU-based
Different levels of abstraction

Course activities and assessments

Lecture/discussion: 2 hours/week

Lab activities: 2 hours/week supervised +
some independent work

Projects: Optimizing matrix multiplication in
each model + 1 writing project

Quizzes: 4 quizzes (one for each
programming model + the paper-reading)

Comprehensive final exam

10

Outline

Breadth-first course overview

Course content

® |nitial overview
B OpenMP, TBB, CUDA details
B Reading papers on other models

Evaluation

11

Module 1: Overview of basics

Lecture topics

B Overview of multicore challenges (View from
Berkeley)

B Parallel decomposition; task parallelism; data
parallelism

B Performance analysis: speedup, scalability

B Memory hierarchy, cache coherence,
synchronization

12

Module 1: Overview of basics

Sample activities/assignments
B Parallelize this recipe!

B Practice mapping computations to threads by
“parallelizing” two embarrassingly data-parallel
algorithms

13

Module 2: OpenMP

OpenMP background

B Simple API for shared-memory programming
B Established and widely supported (1998-)

B Support for data and (some) task parallelism

Assignments

B Parallelize and tune code from Module 1

B Implement a data-parallel algorithm with
significant dependencies

14

OpenMP sample code

#pragma omp parallel for
for (1 = 0; 1 < N; 1++)
ali] = bl[1] + 1;

15

Module 3: TBB

TBB background

B Introduced by Intel in 2006

B C++ template library (very STL-like)

B High-level; hides implementation detalils

Assignments

B Port previous assignments to TBB
B Use TBB’s concurrent container classes

16

TBB sample code

class some class

volid operator () (const blocked range
&range) const {
for (int 1 = range.begin|();
1!= range.end(); 1++)
Al1] = B[1] + 1;

b s
parallel for(blocked range(0,N),
some class (A, B), auto partitioner());

17

Module 4: CUDA

CUDA background

B Introduced by nVidia in 2007 for general-
purpose GPU programming

B Requires programmer to manage movement of
data between CPU and GPU

B Requires programmer to map computations to
threads and thread blocks on GPU

18

Sample CUDA code

ke

rnel<<< gridDim,

blockDim, 0 >>> (A, B);

global wvoid kernel (float* A, float* B) {

unsigned 1nt tid
threadIldx.x;

Altid] = B[tid]+1;

blockIdx.x*blockDim.x +

19

Module 5: Other models

Papers read

B GPGPU: Owens et al, Proc. IEEE 5/2008.

B MapReduce: Dean et al, OSDI 2004.

B [ransactional memory: Adl-Tabatabai et al,
Queue 12/06.

Method: just-in-time teaching + discussion

B Students submit writeups shortly before class

B Their answers drive the day’s discussion
[Davis, SIGCSE '09]

20

Sample just-in-time assignment

Reading guide: roadmap of paper

B “Read the section on programming with
transactions. Understand the programming
examples and the graph. This section
describes the guarantees that a TM system
makes to the programmer, and the benefits to
correctness and performance.”

21

Sample writeup questions

High-level comprehension:

B Explain in your own words why versioning is
needed and the difference between eager and
lazy versioning.

L ow-level:

B Explain Figure 2: what does it show, and why
does that result occur?

22

Project: Tutorial on one model

Explain when the model is important/useful

Guide the reader through a simple example
with some performance tuning/analysis

23

Outline

Breadth-first course overview
Course content

Evaluation

B L[earning objectives?

B Course structure and assignments?
B Future changes

24

Evaluation instruments

End-of-semester survey and evaluations

Reflections in student project reports
(throughout semester)

Choice of model for final project

25

Good things

Lab assignments

B Rated as most helpful component of course for 3
of the 4 learning outcomes

CUDA
B By far the most popular model

B GPU “cool” factor? Bigger speedups? Low-level
control?

B Students preferred programming models in order
from low- to high-level

Discussions of papers

26

Bad things

Projects

B Limited shared hardware => flawed speedup
results and a lot of frustration

B Matrix multiplication: too staid a problem?
TBB?

B | east popular model...hard to understand
performance, too much bureaucracy

B Worthwhile challenge to students?
B Valuable comparison point?

27

Open Questions

Breadth-first?

B Class was evenly split between liking the
course as-is and wanting slightly more depth

B No one wanted pure depth-first (studying only
one model)

Choice of programming models?
B New models, new infrastructure emerging

B \Would keep GPU model (CUDA? OpenCL?)
but the rest is up for debate

28

http://rivoire.cs.sonoma.edu/cs385/

Give an example of a computational task that would still require the programmer to
manage synchronization in TBB (e.g. with mutexes).

CE\/“B Az s.x-t/é Ar %LL\ 1(7/‘-‘.\ B ({64—}

- A \‘~:.'[__- Y\ o p g ‘ ”'L C’L;
oy Gl ok exed ;A

CS 385 TBB Quiz |

\Jiéf AD . \"-](""t’/L L\S (_/t (W3 | 5’-‘\) LJ Page : Of :
? t : ,
sl dome | -

