A Breadth-First Course in
Multicore and Manycore Programming

Suzanne Rivoire
Sonoma State University
Department of Computer Science
Rohnert Park, CA, USA
suzanne.rivoire@sonoma.edu

ABSTRACT

The technique of scaling hardware performance through in-
creasing the number of cores on a chip requires programmers
to learn to write parallel code that can exploit this hard-
ware. In order to expose students to a variety of multicore
programming models, our university offered a breadth-first
introduction to multicore and manycore programming for
upper-level undergraduates. Our students gained program-
ming experience with three different parallel programming
models, two of which are less than five years old and targeted
specifically to multicore and manycore computing. Assess-
ments throughout the semester showed that the course gave
students a broad base of experience from which they will be
able to understand ongoing developments in the field.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and In-
formation Science Education; D.1.3 [Programming Tech-
niques]: Concurrent Programming—parallel programming

General Terms

Human Factors, Languages

Keywords

parallel programming education, multicore, OpenMP, TBB,
CUDA

1. INTRODUCTION

Over the past five years, processor manufacturers have
abruptly shifted their method of scaling performance from
increasing clock speeds to increasing the number of cores on
a chip. Two- and four-core processors are common now, and
the number of cores is expected to scale into the manycore
range of tens and even hundreds in the coming years [2]. If
these hardware improvements are to translate into software
performance gains, programmers must learn how to write
parallel code.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGCSE’10, March 10-13, 2010, Milwaukee, Wisconsin, USA.

Copyright 2010 ACM 978-1-60558-885-8/10/03 ...$10.00.

Researchers have proposed many programming models for
harnessing multicore and manycore processors. However,
despite increasing consensus that undergraduates should learn
parallel programming, these newer models are generally pre-
sented only at the graduate level. Furthermore, it is unclear
which of these models will prevail in the long term.

At Sonoma State University, a mostly undergraduate U.S.
public university with approximately 125 computer science
majors, we created an elective course to give our undergrad-
uates a broad-based background in multicore programming.
We wanted the students to gain plenty of programming expe-
rience but to avoid committing to a single model of parallel
programming. Instead, our course aimed to give students
the broad perspective necessary to understand future de-
velopments in this rapidly changing field and to effectively
use whichever programming models win out. In order to
meet this goal, we offered a unique breadth-first introduc-
tion to multicore and manycore programming, giving stu-
dents hands-on experience with three programming models:
OpenMP, TBB, and CUDA. The unusual organization and
content of this course allowed our students to achieve these
learning objectives, and the students’ feedback has provided
us with clear indications of what worked and what decisions
should be revisited in future offerings of the course.

This paper first reviews related work in parallel program-
ming education. Section 3 then discusses the content and
structure of the course. Section 4 examines student feed-
back on the course organization and content, and Section 5
discusses lessons learned.

2. RELATED WORK

While the multicore era has introduced new urgency and
complexity to parallel programming education, undergrad-
uate parallel programming courses are not new [3, 8. One
approach to teaching undergraduates parallel programming
is to inject it in snippets throughout the CS curriculum, as
the University of Wisconsin at Eau Claire has done [7]. An-
other way to introduce new parallel programming models is
in the operating systems class, where undergraduates tra-
ditionally encounter concurrency for the first time, as UT-
Austin has done with transactional memory [19]. This paper
presents an alternative approach: a single undergraduate
elective course devoted to studying a range of parallel pro-
gramming models. The advantages of this approach are a
sustained focus on parallel programming, exposure to a va-
riety of programming models, and ease of implementing the
course without requiring systemic changes to the curriculum.

Beyond the undergraduate level, several studies have con-

sidered best practices for parallel programming instruction [13,
14]. At the graduate level, a course at the University of
Central Florida examined several graphics processors and
programming models [9]. The course described in this pa-
per examines a broader variety of programming models with
less emphasis on the hardware implementation. Because our
course targets a less experienced undergraduate audience,
the pedagogical techniques and assessments also differ.

A related body of research tracks the productivity of novice
programmers with different parallel programming models [10,
11]. These studies target the high-performance computing
domain, a relatively specialized area. However, as multi-
core processors become mainstream, the usability of parallel
programming models will become even more important.

3. COURSE DESIGN

CS 385, Multicore and Manycore Programming [18], was
offered as a special-topics upper-division elective for com-
puter science majors at Sonoma State University. The course
prerequisites were CS2 and introductory computer organi-
zation. Eighteen students, all junior- and senior-level under-
graduates, enrolled. The class met for a total of two hours
of lecture and two hours of supervised lab each week.

3.1 Subjects covered

The course content comprised five modules of two to three
weeks each. The first module was a lecture-based crash
course in parallelism, the memory hierarchy, and perfor-
mance analysis. Because junior-level computer architecture
was not a prerequisite for this course, an introduction to
these topics was needed to ensure that all of the students
had sufficient background.

The next three modules covered three different parallel
programming models, which were chosen on the basis of
their accessibility to our students (who are most proficient
with C++), the robustness and user-friendliness of their im-
plementations, and their potential scalability to tens if not
hundreds of cores. Students completed labs and program-
ming projects using each of these three models.

The first model covered was OpenMP [4]; the idea was
to get the students up to speed using a simple and widely
supported shared-memory programming model. OpenMP
allowed the students to quickly express task- and data-level
parallelism as well as some ability to tune the performance
of their code through scheduling directives.

The next model was Intel’s Threading Building Blocks
(TBB) [12], which supports parallelism using STL-like C++
generic programming abstractions. TBB supports a greater
variety of parallel patterns than OpenMP, and it largely
takes low-level scheduling out of the programmer’s hands.

The final programming model was nVidia’s CUDA [16], a
model for general-purpose programming of graphics proces-
sors (GPUs) that has been widely used to harness their am-
ple data parallelism for scientific computing. Unlike current
CPUs, GPUs are already able to handle thousands of hard-
ware threads, which makes the mapping of tasks to threads
substantially different than on CPUs. GPUs also require
more explicit memory management on the part of the pro-
grammer, and all but the simplest tasks require some low-
level hardware knowledge.

The remaining portion of the course was a qualitative
overview of other parallel and multicore programming mod-
els. Students read and discussed technical papers on GPU

computing in general [17], MapReduce [6], and transactional
memory [1]. The students thus gained a wider perspective
than would be possible with programming alone, and they
also were exposed to reading technical papers and graduate-
style discussion for the first time.

3.2 Assignments

3.2.1 Labs

In each weekly lab session for the first four modules, stu-
dents wrote parallel code to perform a specific task, and they
were asked to measure the performance of their sequential
and parallel code at different data set sizes in order to un-
derstand speedup and overheads.

The lab assignments given during the initial background
module required the students to mimic some of the thought
processes of parallel programming before they were intro-
duced to a specific programming model. The students wrote
straightforward sequential versions of two very simple algo-
rithms: incrementing all of the elements in an array, and
finding the maximum element of an array. Both algorithms
are “embarrassingly parallel,” although the second requires
a reduction at the end. The students then modified their
code to operate on a chunk of the array at a time based on
a “thread ID” parameter passed into their function, which
introduced them to the problem of mapping elements of the
array to “threads” correctly and efficiently.

In the next module, when they learned OpenMP, they
actually parallelized this code and experimented with the
effect of different data set sizes and scheduling directives on
speedup and performance. They also implemented a sim-
ple task-parallel program. The final OpenMP lab presented
a task with significant interaction between threads. The
problem was to parallelize a program that scans through a
character array and does the following:

e If the i*" character is ‘q’ or ‘Q’, it encrypts character 4
and the next 15 characters using an algorithm similar
to AES, then copies the result into the output array
and resumes with character (i+16).

e Otherwise, it copies character i to the output array
unmodified.

This seemingly simple problem requires significant inter-
action between threads to ensure that the parallel version
yields the same result as the sequential version, due to the
difficulty of determining whether a given ‘q’ will begin a 16-
character block, or whether it will be passed over because it
is contained in the block triggered by a previous ‘q’.

The TBB lab assignments used the array increment, array
max, and “encryption” problems as well as specific smaller
problems to exercise the timing features and concurrent con-
tainers unique to TBB.

The CUDA labs focused on the problem of finding the
FEuclidean distance between two N-dimensional points. This
problem has an embarrassingly parallel phase followed by a
reduction, which the students optimized extensively, gaining
intimate knowledge of the hardware.

The final “labs” were writeups of the technical papers the
students read in the final module of the course. Following
the “just-in-time” teaching method successfully employed by
Davis in upper-division CS courses [5], I prepared a list of
questions for the students to answer by electronic submis-

sion, due a few hours before class. I then designed the in-
class discussion around their responses. The assignments
also included guidelines on how to read these papers and
what the students should be looking for, since they had not
read detailed technical papers before.

3.2.2 Projects

In addition to the supervised labs, the students were also
assigned four longer-term projects. Three were program-
ming projects: one for each of the three programming mod-
els studied. In these projects, the students were asked to
parallelize matrix multiplication using the chosen model and
then further tune the performance with at least four opti-
mizations. Students were also asked to measure the of each
version of the program and analyze the results. Finally,
open-ended qualitative comments about the project or pro-
gramming model counted for 5% of the assignment grade.

The fourth project was not initially planned as part of
the course. Rather, it occurred to me midway through the
course as a way to diversify the projects and to give stu-
dents practice in technical communication. Since students
had found that the existing documentation and resources for
some of the programming models failed to address novice
parallel programmers, I assigned them to write tutorials
about one of the three programming models studied. The
students worked in groups of 2-3 students (8 groups total).
Each group was assigned a programming model based on
their stated preference and on a random drawing to be sure
that each model was equally represented. This project was
a valuable addition to the course and a useful assessment of
the students’ high-level understanding. However, because it
was not initially written into the course schedule, the stu-
dents ended up with an unnecessarily heavy workload when
it was assigned toward the end of the semester.

3.2.3 Other assessments

The only other assessments in the course were 4 narrowly
focused quizzes (one for each module except the introduc-
tion) and a comprehensive final exam requiring students to
synthesize their knowledge of all of the different program-
ming models studied.

4. STUDENT FEEDBACK

4.1 Course organization and content

I solicited qualitative and quantitative student feedback
on the course organization and content in an informal sur-
vey at the end of the semester. I also examined the quali-
tative responses from our standardized institutional course
evaluations; unfortunately, the quantitative portion of our
institutional evaluations is focused solely on the instructor
rather than the course. The data show an overall positive
response to the course, although they indicate possible areas
for improvement the next time this course is offered.

Figure 1 shows the results of the quantitative portion of
this student survey, which was answered by 15 of the 18
students. Students were asked to rate the three major in-
structional components of the course—lectures, labs, and
projects—on their helpfulness in four major categories: un-
derstanding parallel algorithms, analyzing the performance
of code, understanding the latest developments in the tech-
nology industry, and increasing programming skills.

Option # students
Would have preferred depth-first 0
(studying one model in great detail)

Would have preferred depth-first 7
with a little bit of breadth

Liked the course as is 7
Would have preferred a little more 0
breadth (more topics, shallower

coverage)

Would have preferred a lot more 0
breadth

Don’t care/don’t know 1

Table 1: Student opinions of course breadth

The figure shows that the project portion of the course
was most polarizing, with high variation in student ratings
across all four of the questions. Projects also received the
lowest average ratings of any course component in three of
the four categories. Furthermore, in the category of “helped
me understand and analyze the performance of my code,”
at which the projects were specifically targeted, they were
rated as no more helpful than the lab assignments. A look
at the students’ qualitative remarks provides no easy an-
swers; students commented both in favor of and against us-
ing the same problem for all of the different programming
models, and only one student complained about the choice
of matrix multiplication. One possible explanation is the
students’ understandable frustration with competing with
other students for the limited hardware resources available
to extensively test the performance of their code, which one
student summed up as “a lesson in agonizing frustration.”

The labs, on the other hand, were rated as the most help-
ful component of the course in three of the four categories
shown, and they seem to have succeeded where the projects
failed. Since the lab exercises presented the students with
a variety of types of parallelism, it is not surprising that
students rated them highly in the category of parallel algo-
rithms. Similarly, the increase in programming skills may be
attributable to the cooperative setting of the lab portion of
the course, which allowed students to quickly get feedback
from peers and the instructor.

Finally, the evaluations showed that students were highly
enthusiastic about learning a topic that they perceived as
relevant and cutting-edge. The lack of a textbook and the
relative paucity of beginner-level tutorials about TBB and
CUDA did not seem to bother the students; in fact, the only
qualitative comment on this subject urged me to continue
encouraging the students to find and read online documen-
tation in lieu of a textbook in the future.

Perhaps most importantly, I solicited student feedback on
the choice to make this course breadth-first instead of pur-
suing a single parallel programming model (see Table 1).
Students’ responses to this question divided evenly between
“keep as is” and “would prefer depth-first with a little bit of
breadth.” In the qualitative comments, students mentioned
that they appreciated being able to compare parallel pro-
gramming models, but some students did suggest studying
two models in detail instead of three.

4.2 Programming models studied

I also obtained student feedback on the three program-

=very helpful)

Student Rating (5

& Lecture
l & Lab
‘ Projects

code

11K

Helped me create and Helped me
understand parallel understand and
algorithms analyze the

Helped me Increased my

understand the latest programming skills
developments in the
performance of my technology industry

Figure 1: Results of end-of-semester student survey

OpenMP | TBB | CUDA
1st choice 0 1 7
2nd choice 6 1 0
3rd choice 1 6 0

Table 2: Number of groups choosing each program-
ming model for the final project

ming models we studied from their three programming project
writeups and from their preference ordering of the three
models for the tutorial project.

Table 2 shows the students’ order of preference for tuto-
rial topics. CUDA was the first choice of seven of the eight
groups; the group that chose TBB did not specify a sec-
ond or third choice because they were well aware that they
had no competition for their first choice. OpenMP was the
clear second choice, and TBB the third. The qualitative
end-of-semester feedback, as well as student comments on
project writeups, further underscored this order of prefer-
ences. These preferences also correlate with the degree of
low-level detail the programmer is concerned with: CUDA
requires the programmer to understand the hardware on
which it runs at a fairly low level, while TBB nudges the
programmer toward a higher level of abstraction and less
concern with the low-level details of thread mapping and
scheduling. Their preference for lower-level models, sur-
prising given their prior experience with the STL and their
lack of similar background in computer architecture, was
summed up by one student in his CUDA writeup:

“My opinions on CUDA have changed since we first be-
gan working with it. At first, I didn’t like it because it was
for GPUs, and I'm not really interested in graphics... Then
we started learning a bit more about GPUs, and I’ve real-
ized that they are for so much more than graphics now... I
began to like CUDA more and more, as I began to really
understand how I am working with the hardware at such a
low level. TBB was thinking in terms of high-level program-
ming, object-oriented, but with CUDA, I really have full
control of what’s going on. I think that this class in general
has prepared me for Architecture and Operating Systems so
much, and working with CUDA is a perfect example of this.

I've really come to understand CPU and GPU hardware,
and I’'m starting to like it.”

5. LESSONS LEARNED
5.1 Breadth-first?

While I continue to believe that undergraduate students
are better served by exposure to a variety of multicore pro-
gramming models than a semester-long commitment to a
single model, experience with this course shows that 3-week
modules may be too short for students to get an adequate
feel for a programming model. One possibility is to focus the
programming projects on two models but introduce breadth
through the readings, since the final phase of the course, in
which we discussed papers on other programming models,
went better than expected, . Another alternative, also sug-
gested by some students, would be to require more program-
ming and architecture background of the students, requiring
less time for introductory material and allowing more time
to study each model. Unfortunately, the latter alternative
is probably impractical at our institution given its relatively
small size; we are unlikely to have a sufficient number of stu-
dents who meet a significantly more stringent prerequisite.

The choice of programming models remains an open ques-
tion for future offerings of the course. I would definitely
include a GPU-based programming model, whether CUDA,
OpenCL [15], or something else; the high degree of par-
allelism gave students the satisfaction of seeing dramatic
speedups, and the low-level control required pushed the stu-
dents to understand hardware at a deeper level. The other
model(s) are less obvious; using OpenMP as a gentle intro-
duction to parallel programming turned out to probably be
unnecessary, but TBB was roundly disliked and students
found it difficult to understand the performance of their
TBB programs. Since this area is evolving so quickly, per-
haps the right platform has not yet been developed.

The paper discussions were another means of achieving
breadth, and the specific papers chosen gave students a
wider perspective on parallel programming at a level that
they were able to understand. In the future, we would make
up for decreasing breadth in the programming projects by

budgeting time for a wider range of readings on parallel pro-
gramming. This method would give the students the desired
exposure to several programming models without the over-
head of repeatedly mastering new syntax.

5.2 Improving the course components

Student feedback shows a clear opportunity to improve
the projects. Most significantly, as important as it is for stu-
dents to learn how to optimize code with the assistance of
thorough performance measurements, contention for hard-
ware resources can render the experience both meaningless
and frustrating. Matrix multiplication is also a rather staid
problem for the students to optimize. The right solution
may therefore be to give students a more complicated but
more interesting problem and emphasize getting a working
implementation at the expense of optimizing and tuning.

The lab activities were mostly intended to get students
comfortable with the syntax of the different programming
models, but the data in Section 4 show that they were in-
tegral to achieving the conceptual learning objectives of the
course. This indicates an opportunity to revisit the content
of the labs to increase their effectiveness in that role.

Finally, the students’ engagement with the readings far
exceeded my expectations, largely due to the reading guides
and the just-in-time teaching methods used for that com-
ponent of the course. Due to the success with the reading
guides in this class, I have begun to prepare reading guides
for other, textbook-based, courses as well; after all, college
textbooks may be as unfamiliar for beginning students as
technical papers are for advanced students.

6. CONCLUSION

In conclusion, a breadth-first introduction to multicore
programming models satisfied my objectives of giving stu-
dents a broad-based perspective on parallel programming,
and students indicated general satisfaction with the course.
The organization of the course and the specific combination
of models studied were novel and proved effective for our
students, with some caveats.

The choice of a GPU programming model was pedagogi-
cally effective and popular with students; in fact, students
enjoyed and learned more using low-level models than high-
level ones. This counterintuitive observation will help me
select the other programming models more effectively in the
next course offering. The success of the reading portion of
the course also suggests that we could cover two models in
depth instead of three and compensate by reading about
a wider range of models. While there is plenty of room
for adjustment, this initial version of the course successfully
prepared our undergraduate computer science students for
productivity with emerging parallel programming models.

7. ACKNOWLEDGMENTS

I am grateful to the faculty of the Sonoma State Univer-
sity CS department for the opportunity to offer this course,
to Christos Kozyrakis for his advice on the course content,
and to Roger Mamer for his technical support throughout
the semester. In addition, this paper benefited from the
comments of John Davis, Joy Tang, Kathy Charmaz, Sheila
Katz, Richard Senghas, Tom Rosin, and the anonymous re-
viewers. Finally, I am especially grateful to the students who
took CS 385 in Spring 2009 for their enthusiastic participa-

tion in, and their patience with, this experimental course.

8. REFERENCES

[1] A.-R. Adl-Tabatabai, C. Kozyrakis, and B. Saha.
Unlocking concurrency. Queue, 4(10):24-33, 2007.

[2] K. Asanovic, R. Bodik, et al. The landscape of parallel
computing research: A view from Berkeley. Technical
Report UCB/EECS-2006-183, EECS Department,
University of California, Berkeley, Dec 2006.

[3] R. M. Butler, R. E. Eggen, and S. R. Wallace.
Introducing parallel processing at the undergraduate
level. SIGCSE Bull., 20(1):63-67, 1988.

[4] L. Dagum and R. Menon. OpenMP: an
industry-standard API for shared-memory
programming. IEEE Computational Science &
Engineering, 5(1), 1998.

[5] J. Davis. Experiences with Just-in-Time Teaching in
systems and design courses. In SIGCSE, 2009.

[6] J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. In OSDI, 2004.

[7] D. J. Ernst and D. E. Stevenson. Concurrent CS:
preparing students for a multicore world. In ITiCSE,
2008.

[8] A. L. Fisher and T. Gross. Teaching the programming
of parallel computers. SIGCSE Bull., 23(1):102-107,
1991.

[9] H. Gao, M. Dimitrov, et al. Experiencing various
massively parallel architectures and programming
models for data-intensive applications. In Workshop
on Computer Architecture Education, 2008.

[10] L. Hochstein, V. R. Basili, et al. A pilot study to
compare programming effort for two parallel
programming models. Journal of Systems and
Software, 81(11):1920-1930, 2008.

[11] L. Hochstein, J. Carver, et al. Parallel programmer
productivity: A case study of novice parallel
programmers. In Supercomputing (SC), 2005.

[12] Intel. Intel Threading Building Blocks (TBB).
http://software.intel.com/en-us/intel-tbb/.

[13] M. C. Jadud, J. Simpson, and C. L. Jacobsen.
Patterns for programming in parallel, pedagogically.
In SIGCSE, 2008.

[14] D. A. Joiner, P. Gray, et al. Teaching parallel
computing to science faculty: best practices and
common pitfalls. In PPoPP, 2006.

[15] Khronos Group. OpenCL - the open standard for
parallel programming of heterogeneous systems.
http://wuw.khronos.org/opencl/.

[16] nVidia. CUDA zone.
http://www.nvidia.com/object/cuda_home.html.

[17] J. D. Owens, M. Houston, et al. GPU computing.
Proceedings of the IEEE, 96(5):879-899, May 2008.

[18] S. Rivoire. CS 385: Multicore and manycore
programming, Spring 2009.
http://rivoire.cs.sonoma.edu/cs385/.

[19] C. Rossbach, O. Hofmann, and E. Witchel. Is
transactional programming really easier? In PPoPP,
2010.

