
MODELS AND METRICS FOR

ENERGY-EFFICIENT COMPUTER SYSTEMS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL

ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Suzanne Marion Rivoire

June 2008

© Copyright by Suzanne Marion Rivoire 2008

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

(Christoforos Kozyrakis) Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

(Oyekunle Olukotun)

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

(Parthasarathy Ranganathan)

Approved for the University Committee on Graduate Studies.

iii

Abstract

Energy efficiency is an important concern in computer systems from small handheld de-

vices to large data centers and supercomputers. Improving energy efficiency requires met-

rics and models: metrics to assess designs and identify promising energy-efficient technolo-

gies, and models to understand the effects of resource utilization decisions on power con-

sumption. To facilitate energy-efficiency improvements, this dissertation presents Joule-

Sort, the first completely specified full-system energy-efficiency benchmark; and Mantis, a

generic and portable approach to real-time, full-system power modeling.

JouleSort was the first full-system energy-efficiency benchmark with fully specified

workload, metric, and rules. This dissertation describes the benchmark design, highlight-

ing the challenges and pitfalls of energy-efficiency benchmarking that distinguish it from

benchmarking pure performance. It also describes the design of the machine with the high-

est known JouleSort score. This machine, consisting of a commodity mobile CPU and 13

laptop drives connected by server-style I/O interfaces, differs greatly from today’s commer-

cially available servers.

Mantis generates full-system power models by correlating AC power measurements

with software utilization metrics. This dissertation will evaluate several different families

of Mantis-generated models on several computer systems with widely varying components

and power footprints, identifying models that are both highly accurate and highly portable.

This evaluation demonstrates the trade-off between simplicity and accuracy, and it also

iv

shows the limitations of previously proposed models based solely on OS-reported com-

ponent utilization. The simplicity of this black-box approach makes it a useful tool for

power-aware scheduling and analysis.

v

Acknowledgments

I am grateful to many people for their contributions to this dissertation and to the quality of

my life while I worked on it.

First, it has been an honor to work with Christos Kozyrakis, my advisor. I am pro-

foundly grateful to him for his perceptive, patient, and unselfish mentoring over the last six

years. He has been an unfailing source of honest and supportive advice in my research and

in my career, and because of him, I have become a much more competent and confident

scholar and teacher.

I am also deeply thankful to Partha Ranganathan, my mentor at HP Labs. Partha has

been amazingly generous in providing me with professional opportunities, starting with the

opportunity to work on the research described in this dissertation. He has also been a wise

and compassionate mentor whose guidance and support have been indispensable.

I am also grateful to Kunle Olukotun for serving on my reading committee and to

Dwight Nishimura for chairing the examining committee for my defense. Kunle’s feedback

on my work and help during the job search process have been very beneficial to me.

This research would not have been possible without my collaborators and co-authors.

Mehul Shah and I worked closely together to bring his idea of an energy-efficiency ex-

tension of the Sort Benchmark to fruition. I am grateful to him for his patience and his

willingness to help with every aspect of the work. I was also fortunate to work with two

dedicated, talented, and highly skilled undergraduate students: Justin Meza, who extended

my work in designing energy-efficient sorting systems, and Dimitris Economou, whose

vi

work paved the way for the modeling study in this thesis and who contributed to the study

of the Itanium machine discussed in Chapter 7. I also greatly appreciate the outside feed-

back from Luiz Barroso, Wolf-Dietrich Weber, Taliver Heath, Feng Zhao, Kim Shearer,

Bill Bolosky, Naga Govindaraju, Chris Reummler, and Jim Gray, and from the participants

at UC-Berkeley’s RAD Lab retreats.

The work described in Chapter 4 relied on Ordinal Technology’s Nsort software, and I

am grateful to Ordinal’s Chris Nyberg and Charles Koester for their generosity with their

time and support. Similarly, the work described in Chapters 6 and 7 relied on software

written by Justin Moore and by Stephane Eranian, for whose assistance I am also grateful.

Jacob Leverich provided valuable contributions to several aspects of this research. First,

he was indispensable in configuring the hardware and software of the CoolSort machine.

Second, he helped to instrument and configure one of the machines used to validate my

power models. Third, he was an excellent system administrator for our research group, a

job that I am also thankful to him for taking off of my hands. Fourth, hook ’em Horns!

This work also benefited from the administrative and technical assistance of Teresa

Lynn, Charlie Orgish, and Joe Little at Stanford; and Annabelle Eseo, Hernan Laffitte,

Craig Soules, Malena Mesarina, Christina Solorzano, and Rowena Fernandez at HP. Teresa

in particular showed great forbearance during the process of ordering the CoolSort machine

piece by piece.

Funding for my doctoral work was provided by several sources. I am grateful to the

anonymous donor of my Stanford Graduate Fellowship and to the National Science Foun-

dation for their graduate fellowship. My initial research was done with the support of Cray,

and I am grateful to Cray’s Steve Scott for his mentoring; he gave me enough independence

to build my confidence as a researcher, while always being available for advice and feed-

back. My subsequent research was supported by HP Labs, for which I am thankful to John

Sontag as well as Partha and Mehul; and by Google.

vii

On a more personal level, the support of more senior graduate students has been es-

sential to surviving in Stanford’s huge electrical engineering department. From the time I

first set foot on the Stanford campus as a prospective graduate student, Kerri Cahoy took

me under her wing and introduced me to EE students outside the Computer Systems Lab.

Later, when I started doing research, the advice and support of senior students helped me

find my way. Bennett Wilburn, Kelly Shaw, John Davis, and Mattan Erez were particularly

generous and helpful.

My fellow graduate students at Stanford and in the computer architecture community

have made my graduate school years more productive and enjoyable. In particular, Allison

Holloway has been there for me from the introductory electrical engineering course in

the first semester of our freshman year of college all the way through the Ph.D. process.

Additionally, Jayanth Gummaraju, Nju Njoroge, Joel Coburn, Dan Finkelstein, and Nidhi

Aggarwal have become good friends and colleagues. Finally, I appreciate the camaraderie

and support of my current and former groupmates: Varun Malhotra, Rebecca Schultz (who

was also a dedicated research collaborator), Austen McDonald, Chi Cao Minh, Sewook

Wee, Woongki Baek, JaeWoong Chung, Michael Dalton, Hari Kannan, and Jacob Leverich.

During graduate school, I have been fortunate to become involved in several IEEE com-

mittees. It has been rewarding and inspirational to work with such a diverse and passionate

group of engineers, and it has taught me a great deal about my profession. In particular,

I have worked on IEEE Potentials with Phil Wilsey, Kim Tracy, and George Zobrist since

2002, and they have been generous both in providing professional opportunities and in

giving academic and career guidance.

Finally, I am also grateful to all my friends and my entire family for the opportunities

and support they provided me. My mother, Elizabeth Rivoire Lee, has been a loving and

supportive presence in my life, and learned early not to ask when the Ph.D. would be

finished. My late father, Thomas Alexis Rivoire, spent years persuading me that I could

and should pursue a technical career, and I know he would be proud of where I am today. I

viii

also owe a special debt to the other engineers in the family: my grandfather, Bernard Rider,

whose love of math and problem-solving is contagious, and my sister, Kelley Rivoire, who

is a great friend with interesting perspectives on our field. The past few years have brought

wonderful new additions to my family, including my stepfather, Bob Lee, and my husband,

Grant Gavranovic. I am very grateful to Grant for the many years of friendship, love, and

support we have shared. He has enriched my life and made every day happier.

ix

Contents

Abstract iv

Acknowledgments vi

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions . 3

1.3 Dissertation Outline . 4

2 Benchmarking Energy Efficiency 6

2.1 Benchmarking Challenges . 7

2.2 Energy-Efficiency Benchmark Goals . 8

2.3 Current Energy-Efficiency Metrics . 10

2.3.1 Component-level Benchmarks and Metrics 10

2.3.2 System-level Benchmarks and Metrics 12

2.3.3 Data Center-level Benchmarks and Metrics 14

2.3.4 Summary . 15

3 The Joulesort Benchmark Definition 16

3.1 Workload . 17

3.2 Metric . 19

x

3.2.1 Fixed Energy Budget . 19

3.2.2 Fixed Time Budget . 20

3.2.3 Fixed Input Size . 23

3.3 Benchmark Categories . 24

3.4 Measuring Energy . 25

3.4.1 System Boundaries . 25

3.4.2 Ambient Environment . 26

3.4.3 Measurement and Instrumentation 26

3.5 Summary . 27

4 Designing Energy-Efficient Computer Systems 29

4.1 Energy Efficiency of Past Sort Benchmark Winners 30

4.1.1 Methodology . 30

4.1.2 Analysis . 32

4.2 Evaluation of Commodity Systems . 35

4.2.1 Unbalanced Systems . 35

4.2.2 Balanced Server . 38

4.2.3 Summary . 40

4.3 Design of the JouleSort Winner . 40

4.3.1 Details of Winning Configuration 41

4.3.2 Varying Hardware Configuration 43

4.3.3 Varying Software Configuration 51

4.3.4 CPU and I/O Dynamic Power Variation 52

4.3.5 Summary . 53

4.4 Other Energy-Efficiency Metrics . 53

4.5 Conclusions . 63

xi

5 Power Modeling Background 65

5.1 Power Modeling Goals . 66

5.2 Power Modeling Approaches . 67

5.2.1 Simulation-based Power Models 68

5.2.2 Detailed Analytical Power Models 70

5.2.3 High-level Black-box Power Models 72

6 The Mantis Power Modeling Methodology 76

6.1 Overview of Model Development and Evaluation 77

6.2 Calibration Process . 79

6.2.1 Calibration Software Suite . 80

6.2.2 Portability and Limitations . 81

6.3 Model Inputs . 82

6.4 Models Studied . 84

6.5 Evaluation Process . 85

6.5.1 Introduction . 85

6.5.2 Machines . 86

6.5.3 Benchmarks . 89

7 Power Modeling Evaluation 92

7.1 Overall Results . 93

7.2 Xeon Server Power Models . 102

7.3 Itanium Server Power Models . 108

7.4 CoolSort-13 Power Models . 113

7.4.1 CoolSort-13, Highest Clock Frequency 113

7.4.2 CoolSort-13, Lowest Clock Frequency 117

7.5 CoolSort-1 Power Models . 118

7.5.1 CoolSort-1, Highest Clock Frequency 121

xii

7.5.2 CoolSort-1, Lowest Clock Frequency 125

7.6 Laptop Power Models . 126

7.6.1 Laptop, Highest Clock Frequency 129

7.6.2 Laptop, Lowest Clock Frequency 133

7.7 Conclusions . 134

8 Conclusions 139

8.1 Future Work . 141

Bibliography 144

xiii

List of Tables

2.1 Summary of the target domains of different energy-efficiency benchmarks

and metrics. 11

2.2 Summary of the specifications of different energy-efficiency benchmarks

and metrics. 11

3.1 Summary of sort benchmarks. 18

4.1 Estimated yearly improvement in pure performance (SRecs/sec), price-

performance (SRecs/$), and energy efficiency (SRecs/J) of past Sort

Benchmark winners. Performance sorts include MinuteSort, Terabyte

Sort, and Datamation Sort. 34

4.2 Summary of commodity systems for which the JouleSort rating was exper-

imentally measured. 35

4.3 Specifications of the unbalanced commodity systems listed in Table 4.2. . . 36

4.4 JouleSort benchmark scores of unbalanced commodity systems. 36

4.5 Specifications of the balanced fileserver. 39

4.6 Components of the CoolSort machine and their retail prices at the time of

purchase. 41

4.7 Power and performance of winning JouleSort systems. 42

xiv

4.8 Detailed utilization information for winning JouleSort systems, including

the number of sorted records, the sorting bandwidths and CPU utilization,

and the power factor (PF). 42

4.9 CoolSort configurations with varying numbers of disks. For each number

of disks shown in the left-hand column, the next three columns show the

number of disks attached to the 4-disk controller, the 8-disk controller, and

the motherboard, respectively. A controller is removed from the system if

no disks are attached to it. 44

4.10 Low-power machines benchmarked by Meza et al. [45]. 54

6.1 Summary of machines used to evaluate Mantis-generated models. 86

6.2 Xeon server components. 87

6.3 Itanium server components. 87

6.4 CoolSort components for modeling study. 88

6.5 Laptop components. 88

6.6 Selected properties of Mantis evaluation machines. 89

6.7 Descriptions of benchmarks selected to evaluate Mantis models. 89

6.8 Component utilizations of Mantis evaluation benchmarks. 91

7.1 Model calibration results for the Xeon server. 105

7.2 Model calibration results for the Itanium server. 109

7.3 Model calibration results for CoolSort-13 at its highest frequency. 114

7.4 Model calibration results for CoolSort-13 at its lowest frequency. 118

7.5 Model calibration results for CoolSort-1 at its highest frequency. 122

7.6 Model calibration results for CoolSort-1 at its lowest frequency. 126

7.7 Model calibration results for the laptop at its highest frequency. 131

7.8 Model calibration results for the laptop at its lowest frequency. 134

xv

List of Figures

3.1 The measured energy efficiency of the current JouleSort-winning system at

varying input sizes. 22

4.1 Estimated energy efficiency of previous winners of sort benchmarks. 32

4.2 Variation of performance and price-performance with the number of disks

in the CoolSort system. 45

4.3 Variation of power consumption with the number of disks in the CoolSort

system. 46

4.4 Variation of energy efficiency with the number of disks in the CoolSort

system. 48

4.5 Variation of average power and energy efficiency with CPU frequency and

filesystem for a 10 GB sort on CoolSort. 50

4.6 PennySort scores of energy-aware systems and previous PennySort bench-

mark winners, normalized to the lowest-scoring system. 55

4.7 JouleSort scores of energy-aware systems and previous PennySort, Min-

uteSort, and Terabyte Sort benchmark winners, normalized to the lowest-

scoring system. 56

4.8 Records sorted per Joule per dollar of purchase price of energy-aware sys-

tems and previous PennySort winners, normalized to the lowest-scoring

system. 57

xvi

4.9 Product of JouleSort and PennySort scores of energy-aware systems and

previous PennySort winners, on a logarithmic scale, normalized to the

lowest-scoring system. 58

4.10 Reciprocal of energy-delay product of energy-aware systems and previous

sort benchmark winners, on a logarithmic scale, normalized to the lowest-

scoring system. 60

4.11 Performance-TCO ratio for energy-aware systems, normalized to the

lowest-scoring system. 61

6.1 Overview of Mantis model generation and use. 78

6.2 Mantis instrumentation setup. 79

7.1 Overall mean absolute error for Mantis-generated models over all bench-

marks and machine configurations. 94

7.2 Overall 90th percentile absolute error for Mantis-generated models over all

benchmarks and machine configurations. 95

7.3 Best case for the empirical CPU-utilization-based model: CPU-intensive

benchmarks on Xeon server. 96

7.4 Power predicted by the empirical CPU-utilization-based model versus CPU

utilization for the Xeon server. 97

7.5 Measured power versus CPU utilization for the Xeon server during the cal-

ibration suite. Note that memory and disk utilization also varied over this

data. 98

7.6 Best case for the CPU- and disk-utilization-based model: Selected bench-

marks on CoolSort-13 at the highest frequency. 100

7.7 Power predicted by the CPU-utilization-based models and the CPU and

disk-utilization-based model versus CPU utilization on CoolSort-13 at its

highest frequency. Disk utilization is assumed to be 0. 101

xvii

7.8 Best case for the performance-counter-based model: Selected benchmarks

on the Xeon server and on CoolSort-13 at the highest frequency. 103

7.9 Mean absolute percentage error of the Mantis-generated models on the

Xeon server. 106

7.10 90th percentile absolute percentage error of the Mantis-generated models

on the Xeon server. 107

7.11 Mean absolute percentage error of the Mantis-generated models on the Ita-

nium server. 111

7.12 90th percentile absolute percentage error of the Mantis-generated models

on the Itanium server. 112

7.13 Mean absolute percentage error of the Mantis-generated models on

CoolSort-13 at its highest frequency. 115

7.14 90th percentile absolute percentage error of the Mantis-generated models

on CoolSort-13 at its highest frequency. 116

7.15 Mean absolute percentage error of the Mantis-generated models on

CoolSort-13 at its lowest frequency. 119

7.16 90th percentile absolute percentage error of the Mantis-generated models

on CoolSort-13 at its lowest frequency. 120

7.17 Mean absolute percentage error of the Mantis-generated models on

CoolSort-1 at its highest frequency. 123

7.18 90th percentile absolute percentage error of the Mantis-generated models

on CoolSort-1 at its highest frequency. 124

7.19 Mean absolute percentage error of the Mantis-generated models on

CoolSort-1 at its lowest frequency. 127

7.20 90th percentile absolute percentage error of the Mantis-generated models

on CoolSort-1 at its lowest frequency. 128

xviii

7.21 Mean absolute percentage error of the Mantis-generated models on the lap-

top at its highest frequency. 131

7.22 90th percentile absolute percentage error of the Mantis-generated models

on the laptop at its highest frequency. 132

7.23 Mean absolute percentage error of the Mantis-generated models on the lap-

top at its lowest frequency. 135

7.24 90th percentile absolute percentage error of the Mantis-generated models

on the laptop at its lowest frequency. 136

xix

Chapter 1

Introduction

1

CHAPTER 1. INTRODUCTION 2

1.1 Motivation

In contexts ranging from large-scale data centers to mobile devices, energy use is an im-

portant concern. In data centers, according to the United States Environmental Protection

Agency, power consumption in the United States doubled between 2000 and 2006, and

will double again in the next five years [74]. Server power consumption not only directly

affects a data center’s energy costs, but also necessitates the purchase and operation of cool-

ing equipment, which can consume one-half to one Watt for every Watt of power consumed

by the computing equipment.

In addition, energy use has implications for reliability, density, and scalability. As data

centers house more servers and consume more energy, removing heat from the data cen-

ter becomes increasingly difficult [49]. Since the reliability of servers and disks decreases

at high temperatures, the power consumption of servers and other components limits the

achievable density of data centers, which in turn limits their scalability. Furthermore, en-

ergy use in data centers is starting to prompt environmental concerns of pollution and ex-

cessive load placed on local utilities [51]. These concerns are sufficiently severe that large

companies are starting to build data centers near electric plants in cold-weather environ-

ments [42].

In mobile devices, battery capacity and energy use directly affect usability. Battery

capacity determines how long devices last, constrains form factors, and limits functionality.

Since battery capacity is limited and improving slowly, device architects have concentrated

on extracting greater efficiency from the individual underlying components, such as the

processor, the display, and the wireless subsystems.

To facilitate energy-efficiency optimizations, we need metrics and models. Metrics help

define energy efficiency, giving a basis on which to compare designs and a way to identify

promising energy-efficient technologies. Models show the relationship between resource

CHAPTER 1. INTRODUCTION 3

utilization and power consumption, which allows data center scheduling algorithms or in-

dividual users to tailor their usage to maximize energy efficiency.

To address these challenges, this dissertation presents the JouleSort energy-efficiency

benchmark and the Mantis approach to high-level power modeling.

1.2 Contributions

The main contributions of this dissertation are the following:

• It presents the specification for JouleSort, the first completely specified, full-system

energy-efficiency benchmark to be proposed. It describes the benchmark workload,

metric, and rules, highlighting the unique challenges of designing a benchmark for

energy efficiency.

• It presents the energy-efficient CoolSort system, the machine with the highest known

JouleSort benchmark score, which is over 3.5 times more energy-efficient than pre-

vious systems. CoolSort consists of a high-end mobile processor connected to 13

SATA laptop disks. This unusual configuration suggests a promising new approach

to energy-efficient hardware design. The CoolSort design and the JouleSort specifi-

cation were originally presented in [57] and [58].

• It presents a method of high-level, full-system power modeling that uses a linear com-

bination of OS utilization metrics and hardware performance counters, and demon-

strates that this model accurately predicts power consumption over a very wide range

of hardware configurations and software workloads. This model was originally pre-

sented in [14].

• It provides a detailed evaluation of several previously proposed high-level power

models, noting the types of systems to which each model is best suited and the trade-

offs between model complexity and prediction accuracy. This analysis shows that the

CHAPTER 1. INTRODUCTION 4

modeling approach we proposed, based on OS utilization metrics and performance

counters, is the most accurate type of model across the machines and workloads

tested. It is particularly useful for machines whose dynamic power consumption

is not dominated by the CPU and for machines with aggressively power-managed

CPUs, two classes of systems that are increasingly prevalent.

1.3 Dissertation Outline

Chapters 2 through 4 present the JouleSort energy-efficiency benchmark. Chapter 2 pro-

vides background on the problem of benchmarking for energy efficiency, examining the

goals of an energy-efficiency benchmark and the limitations of previous approaches.

Chapter 3 presents the specification for the JouleSort benchmark, which was the first

completely specified, full-system energy-efficiency benchmark to be proposed. It explains

the JouleSort workload, metric, and rules, as well as the challenges and pitfalls of designing

a fair benchmark for energy efficiency.

Chapter 4 presents the CoolSort machine, an energy-efficient sorting system that

achieves the highest known JouleSort score. It also evaluates the JouleSort benchmark

scores of a variety of other systems, including the best-performing and most cost-efficient

winners of previous sort benchmarks, as well as commodity machines from a variety of

system classes. Finally, it compares the JouleSort metric to metrics using other combi-

nations of performance, cost, and power. Different combinations of these metrics favor

different system classes, but the high score of the CoolSort machine is not highly sensitive

to changes in the metric.

Chapters 5 through 7 describe the Mantis approach to portable and general high-level

full-system power modeling. Chapter 5 defines the goals of the Mantis approach and ex-

amines previous approaches to power modeling at the architectural level and higher, from

CHAPTER 1. INTRODUCTION 5

detailed simulation-based power models to very simple high-level models based on a sin-

gle metric. It compares the accuracy, generality, and level of detail of these previously

proposed models, and assesses their suitability with respect to the Mantis goals.

Chapter 6 explains the Mantis model generation and evaluation methodology. It de-

scribes the models themselves as well as the process of generating the models, including

a detailed discussion of the software calibration suite and the hardware infrastructure. It

also details the hardware and software configurations on which the models are evaluated in

Chapter 7.

Chapter 7 presents the results of generating and evaluating the Mantis models on a

wide range of machines. In general, the model that we proposed, which uses a linear com-

bination of CPU performance counters and OS-reported component utilizations, is most

accurate. We show the strengths and limitations of each model and make a case that OS-

reported CPU utilization alone will be an increasingly less useful proxy for system-level

power consumption in the future. Finally, Chapter 8 concludes the dissertation and suggests

directions for future work.

Chapter 2

Benchmarking Energy Efficiency

6

CHAPTER 2. BENCHMARKING ENERGY EFFICIENCY 7

Energy efficiency is a pressing concern in computer systems, from mobile devices to

data centers. Energy-conscious users, as well as computer manufacturers and researchers,

need to be able to assess and compare the energy efficiency of computer systems in order to

make purchasing decisions or to identify promising technologies. Well-defined benchmarks

are needed to provide standardized and fair comparisons of computers’ energy efficiency.

To this end, this thesis presents the JouleSort energy-efficiency benchmark in Chapter 3.

This chapter lays the groundwork by explaining the challenges and complexities of energy-

efficiency benchmarking, outlining the goals of the JouleSort benchmark, and describing

the goals and limitations of other energy-efficiency benchmarks and metrics that have been

proposed.

2.1 Benchmarking Challenges

A complete benchmark specifies three things: a workload to run, which should represent

some real-world task of interest; a metric or “score” to compare different systems; and

operational rules to ensure that the benchmark runs under realistic conditions. Creating

a benchmark for energy efficiency shares some challenges with creating any benchmark.

There is the question of what to benchmark, e.g. components, single machines, or data cen-

ters. There is also the question of workload choice, which effectively also determines the

class of machines to which the benchmark can be applied; for example, a supercomputing

benchmark probably could not run on handheld devices, and would not be a representative

workload if it could. Benchmarks exist for almost every conceivable class of workload and

for every class of machine, from small embedded processors [15] to large clusters [72] and

supercomputers [54].

The benchmark metric must also be determined. Even when the goal is to measure pure

performance, the decision of whether to use a metric based on the time to execute a fixed-

size workload or the throughput in a fixed amount of time can bias the metric toward certain

CHAPTER 2. BENCHMARKING ENERGY EFFICIENCY 8

types of machines or exclude them entirely. When the goal is to balance performance with

another concern, such as cost, the question of how to weigh and combine the two metrics

in the final benchmark score adds another element of complexity.

Finally, the benchmark specification must include rules to ensure that the benchmark

runs under fair and realistic conditions. For performance-oriented benchmarks, these rules

often constrain the types of compiler optimizations that can be applied to the benchmark

source code in order to preclude benchmark-specific compiler optimizations of dubious

general correctness. The rules may also constrain the type of hardware, operating system,

or file system on which the benchmark is run.

Benchmarking energy efficiency presents some unique challenges. The choice of work-

load is complicated by the fact that the desired operating point(s) of the system must be

identified; in particular, since lightly utilized systems are currently highly inefficient [5],

benchmark designers may want to target this operating point. The choice of metric also

becomes more complex, since it must resolve the question of how to weigh performance

against power consumption. However, the benchmark rules are the largest source of in-

creased complexity. First, the definition of the system and its environment becomes more

complex. The ambient temperature around the system affects its power consumption, so

benchmark designers may want to regulate it. They also must decide whether or not to

include the cooling systems of both the machine and the building housing it, a significant

decision since cooling can consume up to one Watt for each Watt of power consumed by the

computing equipment [50]. Additionally, energy-efficiency benchmarks require standards

to govern the accuracy and sampling rate of the power and temperature instrumentation.

2.2 Energy-Efficiency Benchmark Goals

The JouleSort benchmark was created with the goal of providing a fully specified energy-

efficiency benchmark that was meaningful and broadly applicable in order to identify trends

CHAPTER 2. BENCHMARKING ENERGY EFFICIENCY 9

and inspire improvements in energy efficiency. This section describes the design criteria

that the JouleSort specification seeks to balance.

Power-performance trade-off: The benchmark’s metric should capture a system’s per-

formance as well as some measure of power use. Peak or average power would be an

impractical metric, since neither includes a measurement of performance; the benchmark

should not reward a system that consumes almost no power and completes almost no work.

Two reasonable alternatives for the metric are energy, which is the product of execution

time and power; and the energy-delay product. The former metric weighs performance and

power equally, while the latter places more emphasis on performance. Since many bench-

marks already emphasize performance, we chose to use energy as the metric in order to

draw attention to power consumption.

Peak efficiency: A benchmark can measure systems at their most energy-efficient oper-

ating point, which corresponds to peak utilization for most computer systems [5], or it can

explicitly specify one or more different operating points, as SPECpower ssj [68] does. For

simplicity of benchmarking and clarity of the benchmark score, our benchmark does not

specify an operating point and therefore measures peak energy efficiency, giving an upper

bound on the work that can be done for a given power consumption. This operating point

influences design and provisioning constraints for data centers as well as mobile devices.

Furthermore, peak utilization is the most common operating point in some computing do-

mains, such as enterprise environments that use server consolidation to improve energy

efficiency, as well as scientific computing.

Holistic and Balanced: A single component cannot accurately reflect the overall per-

formance and power characteristics of a system. Therefore, the workload should exercise

all core components and stress them roughly equally. The benchmark metric should incor-

porate the energy used by all core components.

Inclusive and Portable: The benchmark should be able to assess the energy efficien-

cies of a wide variety of systems: PDAs, laptops, desktops, servers, clusters, and so on.

CHAPTER 2. BENCHMARKING ENERGY EFFICIENCY 10

It should be as unbiased as possible among architectures and system classes. Moreover,

the benchmark’s workload should be implementable and meaningful across all of these

platforms.

History-proof: In order to track improvements over generations of systems and iden-

tify promising new technologies, the benchmark specification should remain meaningful as

hardware and software technologies evolve, and it should allow comparisons across differ-

ent generations of systems.

Representative: The benchmark’s workload should represent an important class of

workloads for the systems being benchmarked.

Simple: The benchmark should be as simple as possible to set up and administer, and

the score should be easy to understand.

The next section evaluates current energy-efficiency benchmarks in light of these goals.

2.3 Current Energy-Efficiency Metrics

An ideal benchmark for energy efficiency would consist of a universally relevant workload

that is portable to any computing device; a metric that balances power and performance in

a universally appropriate way; and rules that are impossible to circumvent and that provide

fair comparisons across every class of machine. This ideal is impossible to achieve in prac-

tice, so proposed metrics have specialized in different classes of workloads and systems.

This section describes previously proposed energy-efficiency benchmarks and metrics. Ta-

ble 2.1 shows the target system classes of these metrics, and Table 2.2 summarizes their

specifications.

2.3.1 Component-level Benchmarks and Metrics

At the processor level, Gonzalez and Horowitz argued in 1996 that the energy-delay product

was the appropriate metric for comparing two designs [20]. They observed that a chip’s

CHAPTER 2. BENCHMARKING ENERGY EFFICIENCY 11

Benchmark Level Domain
EnergyBench Processor Embedded
SWaP System(s) Enterprise
Energy Star certification System Mobile, desktop, enterprise
SPECpower ssj System Enterprise
Compute Power Efficiency Data center Enterprise
Green Grid metrics Data center Enterprise

Table 2.1: Summary of the target domains of different energy-efficiency benchmarks and
metrics.

Benchmark Workload Metric
SWaP Unspecified Performance/(Space ×Watts)
EnergyBench EEMBC benchmarks Throughput/Joule
Energy Star: Sleep, idle, standby, Certify if “typical” power
workstations Linpack, SPECviewperf < 35% of max. power
Energy Star: Sleep, idle, Certify if each mode’s
other systems standby modes power < predefined threshold
SPECpower ssj Server-side Java Operations/Watt

under varying loads averaged over all loads
Green Grid DCD Unspecified Equipment power / floor

area (kW/ f t2)
Green Grid DCiE Unspecified % of facility power

reaching IT equipment
Compute Power Unspecified IT equipment util. × DCiE
Efficiency
Green Grid DCeP Unspecified Work done / facility power

Table 2.2: Summary of the specifications of different energy-efficiency benchmarks and
metrics.

CHAPTER 2. BENCHMARKING ENERGY EFFICIENCY 12

performance and power consumption were both directly related to the clock frequency, with

performance directly proportional to, and power consumption increasing as the square of,

clock frequency. Therefore, decreasing a processor’s clock frequency by a factor of x would

result in performance degradation proportional to x and a decrease in power consumption

proportional to x2. Since energy is the product of execution time and average power, the net

effect would be an energy decrease by a factor of x. Comparing processors based on energy

would therefore motivate processor designers to focus solely on lowering clock frequency

at the expense of performance. On the other hand, the energy-delay product, which weighs

power against the square of execution time, would show the underlying design’s energy

efficiency rather than merely reflecting the clock frequency. This metric is a specific case

of the MIPS γ per Watt metric [79], where the choice of γ reflects the desired balance

between performance and power. In any case, these metrics are focused on the processor

and do not provide a suggested workload.

For embedded processors, the Embedded Microprocessor Benchmark Consortium

(EEMBC) has proposed the EnergyBench benchmarks [16]. EnergyBench provides a

standardized data acquisition infrastructure for measuring processor power when running

one of EEMBC’s existing performance benchmarks. Benchmark scores are then reported

as “Netmarks per Joule” for networking benchmarks and “Telemarks per Joule” for

telecommunications benchmarks. This benchmark is focused solely on the processor and

on the embedded domain.

2.3.2 System-level Benchmarks and Metrics

Several metrics and benchmarks have been proposed at the single-system level. Perfor-

mance per Watt became a popular metric for servers once power became an important de-

sign consideration [37]. Performance is typically specified with either MIPS or the rating

from peak-performance benchmarks like SPECint [64] or TPC-C [72]. Sun Microsystems

CHAPTER 2. BENCHMARKING ENERGY EFFICIENCY 13

has proposed the SWaP (Space, Watts, and Performance) metric to include servers’ space

efficiency as well as power consumption [71].

Two evolving standards in system-level energy efficiency are the United States govern-

ment’s Energy Star certification guidelines for computers, and the SPECpower ssj bench-

mark.

Energy Star is a designation given by the U.S. government to highly energy-efficient

household products, which has recently been expanded to include computers [17]. For

desktops, desktop-derived servers, notebooks, and game consoles, the Energy Star certi-

fication is awarded to systems with idle, sleep, and standby power consumptions below

certain specified thresholds. For workstations, however, Energy Star certification requires

that the “typical” power (a weighted function of the idle, sleep, and standby power con-

sumptions) not exceed 35% of the “maximum power” (the power consumed during the

Linpack and SPECviewperf benchmarks, plus a factor based on the number of installed

hard disks). Energy Star certification also requires that a system’s power supply efficiency

exceed 80%. Energy Star certification thus depends mainly on a system’s low-power states

and does not include a measure of the system’s performance. Furthermore, its score is

coarse-grained; a system is either certified, or it is not.

The SPECpower ssj benchmark, released in December 2007, is designed to assess the

energy efficiency of servers under a wide variety of loads [68]. Data center servers usually

operate far below peak utilization, which creates inefficiencies, since peak utilization is

the most efficient operating point for modern servers [5]. Therefore, SPECpower ssj uses

a CPU-intensive server-side Java workload and scales it to run at 10%, 20%, 30%, 40%,

50%, 60%, 70%, 80%, 90%, and peak utilization. The SPECpower ssj score is the overall

number of operations per Watt across all of these utilization modes. The benchmark also

specifies a minimum ambient temperature and standards for the power and temperature

sensors used to collect the data. This benchmark is CPU- and memory-centric, and both its

workload and metric are tailored to the data center domain.

CHAPTER 2. BENCHMARKING ENERGY EFFICIENCY 14

2.3.3 Data Center-level Benchmarks and Metrics

Many metrics have been proposed to quantify various aspects of data center energy effi-

ciency, from the building’s power and cooling provisioning to the utilization of the com-

puting equipment. The Uptime Institute identified a variety of metrics contributing to data

center “greenness,” including measures of power conversion efficiency at the server and

data center levels, as well as the utilization efficiency of the deployed hardware [70]. To

optimize data center cooling, Chandrakant Patel and others have advocated a metric based

on performance per unit of exergy destroyed [49]. Exergy is the available energy in a ther-

modynamic sense, and so exergy-aware metrics take into account the conversion of energy

into different forms. In particular, exergy is expended when electrical power is converted

to heat and when heat is transported across thermal resistances.

The Green Grid, an industrial consortium including most major hardware vendors, has

proposed several metrics to quantify data center power efficiency over both space and time.

To quantify space efficiency, they define the Data Center Density (DCD) metric as the ratio

of the power consumed by all equipment on the raised floor to the area of the raised floor,

in units of kilowatts per square foot [23]. To quantify time efficiency (that is, energy effi-

ciency), they propose the Data Center Infrastructure Efficiency (DCiE) metric [22]. DCiE

is defined as the percentage of the total facility power that goes to the “IT equipment”

(primarily compute, storage, and network). Since IT equipment power is not necessarily a

proxy for performance, two extensions of this metric have been proposed. Compute Power

Efficiency (CPE), proposed by Malone and Belady, scales the DCiE by the IT equipment

utilization, a value between 0 and 1 [41]. With this metric, the power consumed by idle

servers counts as overhead rather than as power that is being productively used. Similarly,

the Green Grid has introduced the Data Center Energy Productivity metric (DCeP), which

is the useful work divided by the total facility power [24]. This metric can be applied to

CHAPTER 2. BENCHMARKING ENERGY EFFICIENCY 15

any data center workload. None of these data center metrics specifies a workload, and most

do not take any measure of performance into account.

2.3.4 Summary

Each of these metrics is useful in evaluating energy efficiency in a particular context, from

embedded processors to underutilized servers to entire data centers. However, energy ef-

ficiency metrics for many important computing domains have not been methodically ad-

dressed, and none of the benchmarks or metrics described in this section fully addresses

the goals set forth in Section 2.2. The next chapter presents the specification of the Joule-

Sort energy-efficiency benchmark, which was the first completely specified full-system

energy efficiency benchmark, and which remains the only energy-efficiency benchmark for

data-intensive computing.

Chapter 3

The Joulesort Benchmark Definition

16

CHAPTER 3. THE JOULESORT BENCHMARK DEFINITION 17

This chapter presents the specification for JouleSort, a full-system, data-intensive

benchmark applicable to systems from low-power mobile devices to large clusters. It

describes JouleSort’s workload, metric, and energy measurement guidelines, noting the

pitfalls of alternative approaches.

3.1 Workload

The workload for the JouleSort benchmark is external sort, as specified by the Sort Bench-

mark website [62]. External sort has been an important benchmark in the database com-

munity since 1985 [1], and researchers have used it to understand the system-level effec-

tiveness of algorithm and component improvements, as well as to identify promising tech-

nology trends. Previous sort benchmark winners have foreshadowed the transition from

supercomputers to shared-memory multiprocessors to commodity clusters, and have re-

cently demonstrated the promise of general-purpose computation on graphics processing

units (GPUs) [21]. The sort benchmarks have historically been used as a bellwether to

illuminate the potential of new technologies, rather than to guide purchasing decisions.

The sort benchmarks currently have three active categories, summarized in Table 3.1.

PennySort is a price-performance benchmark that measures the number of records a system

can sort for one penny, assuming a 3-year depreciation; its Performance-Price Sort variation

sets a fixed time budget of one minute and compares records sorted per dollar. MinuteSort

and Terabyte Sort measure a system’s pure performance in sorting for a fixed time of one

minute and a fixed data set of one terabyte, respectively. The original sort benchmark,

Datamation Sort [1], was a pure-performance benchmark for a fixed data set of one million

records; it is now deprecated, since this task is trivial on modern systems. A JouleSort

benchmark to measure the power-performance trade-off is thus a logical addition to the

sort benchmark suite.

CHAPTER 3. THE JOULESORT BENCHMARK DEFINITION 18

Benchmark Focus Description Status
Datamation Sort Perf. Sort 1 million records Deprecated

in minimum time
MinuteSort Perf. Sort max. records in 1 minute Active
Terabyte Sort Perf. Sort 1 TB of data (10 billion Active

records) in minimum time
Price-Perf. Cost-perf. Sort max. records in 1 minute Inactive
Sort and compute records/$
PennySort Cost-perf. Sort as many records as Active

possible for 1 cent, assuming
3-year depreciation

JouleSort Power-perf. Sort a fixed number of records Active
(approx. 10 GB, 100 GB,
1 TB) with minimum energy

Table 3.1: Summary of sort benchmarks.

The sort benchmarks’ workload can be summarized as follows: sort a file consisting of

randomly permuted 100-byte records with 10-byte keys. The input file must be read from,

and the output file written to, external nonvolatile storage. The output file must be newly

created rather than reusing the input file, and all intermediate files used by the sort program

must be deleted.

This workload is representative because most platforms, from large to small, must man-

age an ever-increasing supply of data [40] and thus all perform some type of I/O-centric

task. For example, large-scale websites run parallel analyses over voluminous log data

across thousands of machines [13]. Laptops and servers contain various kinds of file sys-

tems and databases and perform sequential I/O-intensive tasks such as backups and virus

scans. In the handheld domain, cell phones, personal digital assistants, and cameras store,

retrieve, and process multimedia data from flash memory.

Since the sort benchmarks have been implemented on clusters, supercomputers, mul-

tiprocessors, and personal computers [62], sort is clearly portable and inclusive. It is a

simple workload to understand and implement. It is also holistic and balanced, stressing

CHAPTER 3. THE JOULESORT BENCHMARK DEFINITION 19

the core components of I/O, memory, and the CPU, as well as the interfaces that connect

them. Because the fastest sorts tend to run most components at near-peak utilization, sort

measures a system at peak energy efficiency. Finally, the sort workload is relatively history-

proof. While the size of the data set has changed over time, the fundamental sorting task

has been the same since the original sort benchmark was proposed in 1985 [1].

3.2 Metric

Designing a metric that allows fair comparisons across systems and avoids loopholes that

obviate the benchmark presents a major challenge in benchmark development. Since the

JouleSort benchmark’s metric should give power and performance equal weight (see Sec-

tion 2.2), there are three ways to define the benchmark score:

• Set a fixed energy budget for the sort, and compare systems based on the number of

records sorted without exceeding that budget.

• Set a fixed time budget for the sort, and compare systems based on the ratio of records

sorted to energy consumed within that time budget, expressed in sorted records per

Joule.

• Set a fixed workload size for the sort, and compare systems based on the amount of

energy consumed while sorting.

This section examines these three possibilities in detail, and explains the decision to

choose a fixed workload size for JouleSort.

3.2.1 Fixed Energy Budget

The most intuitive extension of MinuteSort and PennySort is to fix a budget for energy

consumption, and then compare the number of records sorted by different systems while

CHAPTER 3. THE JOULESORT BENCHMARK DEFINITION 20

staying within that energy budget. This approach has two drawbacks. First, the power con-

sumption of current platforms varies by several orders of magnitude, from less than 1 W for

handhelds to over 1000 W for large servers, and much more for clusters or supercomputers.

If the fixed energy budget is too small, larger configurations will only sort for a fraction of

a second; if the energy budget is more appropriate to larger configurations, smaller config-

urations will run out of external storage. To be fair and inclusive, the benchmark would

need to have multiple budgets and categories for different classes of systems and would

need these classes to be updated as the technology changes. This decision would limit the

benchmark’s ability to be inclusive and history-proof.

Second, and more important from a practical benchmarking perspective, finding the

largest data set that fits into an energy budget is a non-trivial task due to unavoidable mea-

surement error. There are inaccuracies in synchronizing readings from a power meter to

the actual runs and from the power meter readings themselves (+/- 1.5% for the one used in

these experiments). Since energy is the product of power and execution time, it is affected

by variation in both quantities, so this choice is not simple.

3.2.2 Fixed Time Budget

Analogous to the MinuteSort and Price-Performance Sort metrics, the JouleSort benchmark

could specify a fixed time budget, with a metric based on the number of records sorted and

the power consumption within that time. Just as MinuteSort’s metric is the number of

sorted records and Price-Performance Sort’s is the number of sorted records per dollar,

the JouleSort metric would be the number of sorted records per Joule. This benchmark

would not require separate categories for different classes of systems and would not need

to change with technology. However, there are two serious problems with this approach

that eliminate it from consideration.

CHAPTER 3. THE JOULESORT BENCHMARK DEFINITION 21

Figure 3.1 illustrates these two problems. This figure shows the benchmark score in

sorted records per Joule for varying input sizes (N) evaluated on the winning JouleSort

system, which is described in detail in Chapter 4. Two different configurations were used

to generate this data: for data sets of 1.5 × 107 records or fewer, the input and output data

were striped across 10 disks using Linux LVM2. For larger data sets, the input and output

data were striped across an LVM2 array of six disks, and seven independent disks were

used to store temporary data.

As the figure shows, the benchmark score varies considerably with N. The initial steep

climb in energy efficiency at the leftmost data points occurs because the smallest data sets

take only a few seconds to sort and thus poorly amortize the startup overhead of the sort-

ing program. As the data sets grow larger, this overhead is better amortized and energy

efficiency increases, up to a data set of 15 million records. This is the largest data set that

can be sorted completely in this machine’s memory. For larger data sets, the system cannot

perform the entire sort in memory and must temporarily write data to disk, necessitating

a second pass over the data that doubles the amount of I/O and dramatically decreases the

performance per record. After this transition, energy efficiency stays relatively constant as

N grows, eventually trending slowly downward.

The first problem illustrated by this graph is the disincentive to continue sorting beyond

the largest one-pass sort. A metric based on a fixed time budget provides no way to enforce

continuous progress. To maximize benchmark scores, systems will continue sorting only if

the marginal energy cost of sorting an additional record is lower than the cost of sleeping

for the remaining time. The incentive to continue diminishes or disappears at the point

where an additional record changes the sort from 1-pass to 2-pass. In the 1-pass region of

Figure 3.1, the sort is I/O limited, so it does not run twice as fast as a 2-pass sort. It goes

fast enough, however, to provide about 40% better energy efficiency than a 2-pass sort. If

the system were designed to have a sufficiently low sleep-state power (for this system, 7

W or less), then with a time budget of one minute, the best approach would be to sort 1.5

CHAPTER 3. THE JOULESORT BENCHMARK DEFINITION 22

0

2

4

6

8

10

12

14

16

18

1.0E+05 1.0E+06 1.0E+07 1.0E+08 1.0E+09 1.0E+10

Records Sorted

R
ec

or
d

s
So

rt
ed

 p
er

 J
ou

le
 (

x1
0

0
0

)

Figure 3.1: The measured energy efficiency of the current JouleSort-winning system at
varying input sizes.

CHAPTER 3. THE JOULESORT BENCHMARK DEFINITION 23

×107 records, which takes 10 seconds, and sleep for the remaining 50 seconds, resulting

in a score of 11,800 sorted records per Joule. Thus, for some systems, a fixed time budget

defaults into assessing the energy efficiency of a sleeping system, violating the benchmark

design goal of balancing power and performance.

The second problem illustrated by this graph is the (N lg N) algorithmic complexity of

sort, which causes the downward trend for larger N. Even in the 2-pass region, total energy

is a complex function of many performance factors that vary with N: the amount of I/O,

the number of memory accesses, the number of comparison operations, CPU utilization,

and the amount of parallelism. Figure 3.1 shows that once the sort becomes CPU-bound

(N ≥ 8 × 107 records), the sorted records per Joule score trends slowly downward because

total energy increases superlinearly with N. The score for the largest sort on this machine

is 9% lower than the peak 2-pass score. This decrease occurs in part because the number

of comparisons done in sorting is O(N lg N), and the constants and lower-order overheads

hidden by the O-notation are no longer obscured when N is sufficiently large. This effect

implies that the metric is biased toward systems that sort fewer records in the allotted time.

That is, if two fully utilized systems A and B have the same energy efficiency for a fixed

number of records, and A can sort twice as many records as B in a minute, the metric of

sorted records per Joule will unfairly favor B.

3.2.3 Fixed Input Size

In light of the problems with metrics based on a fixed energy budget or a fixed time budget,

a metric based on fixed input size was chosen for the benchmark, as in the Terabyte Sort

benchmark. This decision necessitates multiple benchmark classes, similar to the TPC-H

benchmark’s scale factors [73], since different workload sizes are appropriate for different

classes of systems. Three JouleSort classes were chosen, with data set sizes of 100 million

records (about 10 GB), 1 billion records (about 100 GB), and 10 billion records (about 1

CHAPTER 3. THE JOULESORT BENCHMARK DEFINITION 24

TB). For consistency, MB, GB, and TB will henceforth be used to denote 106, 109, and 1012

bytes, respectively.

JouleSort’s metric of comparison then becomes the energy to sort a fixed number of

records, which is equivalent to the number of records sorted per Joule when the number of

records is held constant. The latter metric is preferred for two reasons: first, it makes the

power/performance balance more clear, and second, it allows rough comparisons across

different benchmark classes, with the caveats described in Section 3.2.2.

This approach has advantages and disadvantages, but it offers the best balance of the

design criteria described in Section 2.2. The benchmark classes cover a large spectrum

of systems and naturally divide the systems into common classes: laptops, desktops, and

servers.

One disadvantage of the fixed time budget is that as technologies improve, benchmark

classes may need to be added at the higher end and deprecated at the lower end. For

example, if the performance of JouleSort winners improves at the rate of Moore’s Law

(1.6 × /year), a class of systems which today sorts 10 GB in 100 seconds would take only

10 seconds 5 years from today. Once all relevant systems require only a few seconds for

a benchmark class, that class becomes obsolete. Since comparisons across benchmark

classes are not perfectly fair, this approach is not fully history-proof. However, since even

the best-performing sorts are improving more slowly than the Moore’s Law rate, these

benchmark classes should be reasonable for at least 5 years.

3.3 Benchmark Categories

JouleSort, like the other sort benchmarks, has two separate categories within each bench-

mark class: Daytona, for commercially supported general-purpose sorts, and Indy, for “no-

holds-barred” benchmark-specific implementations. For Daytona sorts, the hardware com-

ponents must be unmodified and commercially available, and they must run a commercially

CHAPTER 3. THE JOULESORT BENCHMARK DEFINITION 25

supported OS. As with the other sort benchmarks, entrants must report the purchase cost of

the system.

3.4 Measuring Energy

While many of the benchmark rules can be borrowed from the existing sort benchmarks,

energy measurement requires additional guidelines. The most important areas to consider

are the boundaries of the system to be measured, constraints on the ambient environment,

and acceptable methods of measuring power consumption.

3.4.1 System Boundaries

The energy measurements should capture all energy consumed by the physical system ex-

ecuting the sort. All power must be measured from the wall and include any conversion

losses from power supplies for both AC and DC systems. System power supply ineffi-

ciencies can be significant [7], so this policy encourages careful choice of this component.

Some DC systems, especially mobile devices, can run from batteries, and those batter-

ies must eventually be recharged, which also incurs conversion loss. While the loss from

recharging may be different from the loss from the adapter that powers a device directly,

for simplicity, the benchmark permits measurements that include only adapters.

All hardware components used to sort the input records from start to finish, idle or oth-

erwise, must be included in the energy measurement. If some component is unused but

cannot be powered down or physically removed from the system, then its power consump-

tion is included in the measurement. If any potential energy is stored within the system,

e.g. in batteries, the net change in potential energy must be no greater than zero Joules with

95% confidence, or it must be included in the energy measurement. This rule also applies

to systems with shared power supplies, such as blades within an enclosure. If the system

CHAPTER 3. THE JOULESORT BENCHMARK DEFINITION 26

executing the sort cannot be powered separately from the rest of the enclosure, the total

wall power of the enclosure must be reported.

3.4.2 Ambient Environment

The energy costs of cooling can be significant [50], and cooling systems are varied and

operate at many levels. A typical data center uses air conditioners, blowers, and recircula-

tors to direct and move air among aisles; and heat sinks and fans to distribute and extract

heat away from system components. Given recent trends in energy density, future systems

may incorporate liquid cooling [51]. It is difficult to incorporate, anticipate, and enforce

rules for all such costs in a system-level benchmark. While air conditioners, blowers, and

other cooling devices consume significant amounts of energy in data centers, it would be

unreasonable to include their power consumption for all but the largest sorting systems.

Therefore, the only cooling costs included in the JouleSort metric are measurable and as-

sociated directly with the system being benchmarked. In order to make fair comparisons

between systems, the benchmark requires that an ambient temperature between 20o and 25o

C be maintained at the system’s inlets, or within one foot of the system if no inlet exists.

Energy used by devices physically attached to the sorting hardware that remove heat to

maintain this temperature, e.g. fans, must be included in the energy measurement.

3.4.3 Measurement and Instrumentation

Total energy is the product of the average power over the sort’s execution and the wall-clock

time to complete the sort. As with the other sort benchmarks, wall-clock time is measured

using an external software timer. The easiest method to measure power for most systems

will be to insert a digital power meter between the system and the wall. The power meter

is subject to the “minimum power-meter requirements” from the SPECpower ssj specifica-

tion [68]. In particular, the meter must report real power instead of apparent power, since

CHAPTER 3. THE JOULESORT BENCHMARK DEFINITION 27

real power reflects the true energy consumed and charged for by utilities [39]. While poor

power factors are not penalized, a power factor measured at any time during the sort run

should be reported. Finally, since power and time can both vary, a minimum of three con-

secutive energy readings must be reported. These readings will be averaged, and the system

with mean energy lower than all others in its class and category (including previous years)

with 95% confidence will be declared the benchmark winner for its class and category.

3.5 Summary

The JouleSort benchmark can be summarized as follows:

• Sort a fixed number of randomly permuted 100-byte records with 10-byte keys.

• The sort must start with input in a file on non-volatile store and finish with output in

a file on non-volatile store.

• There are three benchmark classes, for workloads of 108 (10 GB), 109 (100 GB), and

1010 (1 TB) records.

• Within each benchmark class, there are two categories. The Daytona category is for

commercially supported hardware and software, and the Indy category is for “no-

holds-barred” implementations.

• The winner in each category is the system with the maximum records sorted per

Joule, which is equivalent to minimum energy.

• The energy reported must be total true energy consumed by the entire physi-

cal system executing the sort, as measured by a power meter conforming to the

SPECpower ssj [68] guidelines.

• During the sort, ambient temperature must be maintained between 20–25o C.

CHAPTER 3. THE JOULESORT BENCHMARK DEFINITION 28

JouleSort is an I/O-centric, system-level energy-efficiency benchmark that incorporates

performance, power, and some cooling costs. It is balanced, portable, representative, in-

clusive, and simple. It can be used to compare different existing systems, to evaluate the

energy-efficiency balance of components within a given system, and to evaluate different

algorithms that use these components. These features make it possible to chart past trends

in energy efficiency and can help to predict future trends.

Chapter 4

Designing Energy-Efficient Computer

Systems

29

CHAPTER 4. DESIGNING ENERGY-EFFICIENT COMPUTER SYSTEMS 30

This chapter assesses the JouleSort energy-efficiency scores of a variety of systems,

including the historical sort benchmark winners as well as typical commodity systems.

The lessons learned in this evaluation are used to design the CoolSort machine, a fileserver

built from low-power mobile components, which is over 3.5 times more energy-efficient

than any previous sort benchmark winners. Finally, the JouleSort benchmark’s metric is

compared to metrics weighing different combinations of performance, price, and power.

This analysis shows that systems designed around the JouleSort metric also perform well

when cost and performance are weighted more heavily than in the JouleSort metric.

4.1 Energy Efficiency of Past Sort Benchmark Winners

This section examines the question of whether any of the existing sort benchmarks can

serve as a surrogate for an energy-efficiency benchmark. To do so, we first estimate the

sorted records per Joule of the past decade’s sort benchmark winners. This analysis reveals

that the energy efficiency of systems designed for pure performance (i.e. the MinuteSort,

Terabyte Sort, and Datamation winners) has improved slowly. On the other hand, sys-

tems designed for price-performance (i.e. the PennySort winners) are comparatively more

energy-efficient, and their energy efficiency is growing more rapidly. However, since Cool-

Sort’s energy efficiency is well beyond what growth rates would predict for the 2007 Pen-

nySort winner, we conclude that existing sort benchmarks do not inherently provide an

incentive to optimize for energy efficiency, supporting the need for a JouleSort benchmark.

4.1.1 Methodology

Since the winners of previous sort benchmarks were not required to report energy usage,

their power consumption while sorting must be estimated. The number of records sorted,

the execution time of the sort, and the hardware configuration information were obtained

from the previous winners’ posted reports at the Sort Benchmark website [62].

CHAPTER 4. DESIGNING ENERGY-EFFICIENT COMPUTER SYSTEMS 31

The power estimation methodology relies on the fact that the historical sort benchmark

winners have used desktop- and server-class components that should have run at or near

peak utilization for the duration of the sort. Therefore, component power consumption can

be approximated as constant over the sort’s length.

Since CPU, memory, and disks are usually the main power-consuming components in a

system, individual estimates of these components were used to compute the system power.

For GPUTeraSort [21], which made heavy use of a graphics processor, the GPU power was

also included in the component estimates.

To estimate the power consumption of memory and disks, per-disk and per-DIMM

values from the Hewlett-Packard Enterprise Configurator [28] were used, yielding a fixed

power of 13 W per disk and 4 W per DIMM. All of the sort benchmark winners’ reports

include the number of disks in the system. However, some of the sort benchmark winners’

reports only mention total memory capacity and not the number of DIMMs; in those cases,

a DIMM size appropriate for the era of the report is assumed. For CPUs, the power esti-

mates are based on the thermal design power (TDP) of the individual CPU(s) used. TDPs

are conservative estimates that exceed even the peak power seen in common use; therefore,

these numbers were scaled by 0.7 to provide more realistic estimates. When the bench-

mark reports listed only a CPU family and not the specific model, we assumed the latest

possible processor generation given the date of the sort benchmark report, because a given

CPU’s power consumption decreases as feature sizes shrink. Finally, to account for power

supply inefficiencies and for other system components, the total component-level estimates

were scaled by 1.2 for single-node systems and 1.6 for clusters; the larger scaling factor for

clusters attempts to account for additional networking components.

These coarse-grained power estimates are intended to illuminate broad historical trends

and are accurate enough to support the high-level conclusions in this section. The es-

timation methodology was experimentally validated against the server and desktop-class

systems described in Section 4.2.1, for which its accuracy was between 2% and 25%.

CHAPTER 4. DESIGNING ENERGY-EFFICIENT COMPUTER SYSTEMS 32

0

500

1000

1500

2000

2500

3000

3500

1996 1998 2000 2002 2004 2006 2008
Year

Jo
u

le
So

rt
 S

co
re

 (
R

ec
s/

J)

Pennysort Daytona
Pennysort Indy
MinuteSort Daytona
MinuteSort Indy
Terabyte Daytona
Terabyte Indy
Datamation

Figure 4.1: Estimated energy efficiency of previous winners of sort benchmarks.

4.1.2 Analysis

Although previous sort benchmark winners were not configured with power consumption

in mind, they roughly reflect the power characteristics of desktop and higher-end systems

in their day. Figure 4.1, which compares the energy efficiency in sorted records per Joule

of previous sort benchmark winners, supports a few qualitative observations about the rel-

ative improvements in performance, price-performance, and energy efficiency over the last

decade.

First, the PennySort winners, which were optimized for price-performance, are clearly

more energy-efficient than the winners of the MinuteSort and Terabyte Sort benchmarks,

which were optimized for pure performance. There are two reasons for this effect. First, the

CHAPTER 4. DESIGNING ENERGY-EFFICIENT COMPUTER SYSTEMS 33

price-performance metric provides an incentive for system designers to use fewer compo-

nents, and thus less power. Second, it rewards the use of cheaper commodity components,

which, for a given performance point, traditionally have used less energy than expensive,

high-performance components.

In addition to being more energy-efficient than performance-optimized systems, cost-

conscious systems have also shown much more improvement in energy efficiency over

time. This lack of energy-efficiency improvement over time for cluster hardware was also

noted by Barroso in 2005 [4].

Much of the energy-efficiency improvement among the PennySort winners is due to the

last two winners in the Indy category. The 2005 winner, Sheenk Sort [77], benefited from

algorithmic improvements and a minimal hardware configuration–but most importantly,

trends in CPU design had finally swung toward energy efficiency. The processor used

in Sheenk Sort had six times the clock frequency of the processor used by the previous

PennySort winner, while only consuming twice the power. Overall, Sheenk Sort had triple

the performance of the previous winner, while consuming only twice the power.

The 2006 PennySort winner, GPUTeraSort [21], improved upon its predecessors’

energy efficiency by introducing a new system component, the graphics processing unit

(GPU), and utilizing it very effectively. The chosen GPU, the NVidia 7800 GT, is inex-

pensive and comparable in estimated power consumption (57 W) to the system’s 3 GHz

Pentium IV CPU (80 W), but the GPU provides much better streaming memory bandwidth

than the CPU.

The success of GPUTeraSort shows the danger of relying on energy benchmarks that

focus only on specific hardware like CPU or disks, rather than end-to-end efficiency. Such

specific benchmarks would only drive and track improvements of existing technologies and

may fail to anticipate the promise of potentially disruptive technologies.

Table 4.1 compares the growth rates of previous sort benchmark winners along three

dimensions: performance (sorted records per second), price-performance (sorted records

CHAPTER 4. DESIGNING ENERGY-EFFICIENT COMPUTER SYSTEMS 34

Benchmark SRecs/sec SRecs/$ SRecs/J
PennySort 51%/yr. 58%/yr. 25%/yr.
Performance sorts 38%/yr. n/a 13%/yr.

Table 4.1: Estimated yearly improvement in pure performance (SRecs/sec), price-
performance (SRecs/$), and energy efficiency (SRecs/J) of past Sort Benchmark winners.
Performance sorts include MinuteSort, Terabyte Sort, and Datamation Sort.

per dollar), and energy efficiency (estimated sorted records per Joule). The benchmarks are

divided into two categories according to the benchmark’s goal: price-performance and pure

performance. For each category, the yearly rate of improvement is calculated by choosing

the best system (according to the metric) in each year and fitting the result with an exponen-

tial. Table 4.1 shows that PennySort systems are improving almost at the pace of Moore’s

Law along the performance and price-performance dimensions. The pure performance sys-

tems, however, are improving much more slowly.

This analysis also shows much slower growth in estimated energy efficiency than in

the other two metrics for both benchmark categories. Therefore, either energy efficiency

is improving much more slowly than the other metrics, or the current benchmarks are not

capturing the most energy-efficient systems. The 2006 PennySort winner sorts an estimated

3,200 records per Joule, but the 2007 JouleSort winner sorts 11,600 records per Joule (see

Section 4.3), rather than the 4,000 expected from extrapolating the yearly trends. This

result suggests that a benchmark focused on energy efficiency is necessary to track trends

and to promote development of energy-efficient systems and technologies, independent of

cost considerations.

CHAPTER 4. DESIGNING ENERGY-EFFICIENT COMPUTER SYSTEMS 35

Name Description
Laptop Core 2 Duo-based Compaq NC6400 laptop
Blade Transmeta Efficeon-based HP low-power blade server
Std Server Xeon-based HP Proliant DL360 G3 standard 1U server
Fileserver Xeon-based HP Proliant DL360 G5 + disk trays (see Section 4.2.2)

Table 4.2: Summary of commodity systems for which the JouleSort rating was experimen-
tally measured.

4.2 Evaluation of Commodity Systems

This section describes the results of running the JouleSort benchmark on a variety of com-

modity systems, from laptops to servers. The “unbalanced” systems are presented to ex-

plore the system hardware space with respect to power consumption and energy efficiency

during sort; they are “unbalanced” in the sense of not being tuned to exactly match CPU

sorting bandwidth with I/O bandwidth. In addition, a “balanced” fileserver, with a hard-

ware configuration tuned for the JouleSort benchmark, is presented as the default 2007 1

TB benchmark winner. Insights from these balanced and unbalanced commodity systems

are used to construct the 100 GB JouleSort winner, presented in Section 4.3.

4.2.1 Unbalanced Systems

Configurations

Tables 4.2 and 4.3 show the details of the unbalanced systems that were evaluated, com-

prising a variety of servers and personal computers. They include a standard server, an

older low-power blade, and a modern (circa 2006) laptop with its display turned off for

these experiments. The blade was housed in an enclosure designed to hold 15 blades; nev-

ertheless, according to the benchmark rules, the wall power for the entire enclosure is used

to compute the benchmark score.

CHAPTER 4. DESIGNING ENERGY-EFFICIENT COMPUTER SYSTEMS 36

System CPU Memory Disk(s) OS
Laptop Intel Core 2 Duo 3 GB 1×SATA, 60 GB, Win XP

T7200, 2 GHz DDR2 7200 rpm
Blade Transmeta Efficeon 256 MB 1×IDE, 36 GB, Win 2K

TM8000, 1 GHz SDRAM 5400 rpm
Std Server Intel Xeon, 2.8 GHz 2 GB 2×SCSI, 36 GB, Linux

DDR 15000 rpm (Fedora)

Table 4.3: Specifications of the unbalanced commodity systems listed in Table 4.2.

System Recs Power (W) Time (sec.) SRecs/J CPU util.

Laptop 50M 21.0 ± 1.0 727.5 ± 28 3270 ± 120 1%
100M 21.7 ± 1.0 1323 ± 48 3479 ± 131 1%

Blade 50M 90.0 ± 1.0 1847 ± 52 300 ± 10 11%

Std server 50M 139.3 ± 0.1 299.4 ± 2.5 1206 ± 10 25%
100M 138.5 ± 0.1 596.9 ± 0.6 1203 ± 1 26%

Table 4.4: JouleSort benchmark scores of unbalanced commodity systems.

The sort software used in all experiments was Ordinal Technology’s commercial Nsort

program [48], which was used in the winning entry of the 2006 Daytona Terabyte Sort

competition. Nsort uses asynchronous I/O to overlap reading, writing, and sorting oper-

ations as much as possible. It performs both one and two-pass sorts. For each platform,

Nsort’s parameters were tuned for maximum performance. Unless otherwise specified, all

experiments use radix sort for the in-memory sorting algorithm.

To measure the full-system AC power consumption, a digital power meter was inter-

posed between the system being tested and the wall outlet, and samples were taken once

per second. The meter used was the Brand Electronics Model 20-1850CI, which reports

true power with +/- 1.5% accuracy. All measured results show the average power and its

standard deviation over several trials.

CHAPTER 4. DESIGNING ENERGY-EFFICIENT COMPUTER SYSTEMS 37

Results

Table 4.4 shows the JouleSort benchmark scores for these unbalanced systems. Since disk

space on these systems was limited, the benchmark was run with data sets of 50 million

records (5 GB) and, when possible, 100 million records (10 GB). The power factors for

these systems were 1.0 for the server, 0.92 for the blade, and 0.55 for the laptop, reflecting

the fact that mobile devices are not typically designed with power factor correction.

The results show that the standard server is by far the fastest system, taking less time

to sort 100 million records than either the blade or the laptop takes to sort just 50 million

records. However, the laptop is clearly the most energy-efficient machine: the server is 2.2

times as fast as the laptop but uses 6.6 times as much power. Although the standard server’s

disks should be able to provide substantially more sequential bandwidth than the other two

systems’ mobile disks, the server is limited by its SmartArray 5I I/O controller to just 33

MB/s in each pass.

The blade system’s showing is deceptively poor, because measuring the wall power

requires taking the full enclosure power into account. Since the enclosure is designed to

power up to 15 blades, it is both overprovisioned and inefficient at the low load of a single

blade. If the power consumption is adjusted to reflect the blade itself plus a proportionate

share of the enclosure power, the JouleSort rating becomes 1121 ± 144 sorted records per

Joule, considerably higher than the result shown in Table 4.4.

The results also show that the CPUs in all three systems were severely underutilized.

In particular, the laptop attains an energy efficiency similar to that of GPUTeraSort, even

though its cores are barely utilized. Since the CPU is usually the the most power-hungry

system component, and since CPUs are more energy-efficient at high utilization, these

results suggest that the laptop’s energy efficiency would dramatically increase if it had

enough I/O to complement the available processing capacity.

CHAPTER 4. DESIGNING ENERGY-EFFICIENT COMPUTER SYSTEMS 38

4.2.2 Balanced Server

This section presents a commodity fileserver in which the number of disks was adjusted to

match I/O bandwidth with CPU sorting bandwidth as closely as possible. Table 4.5 lists

the components of the server along with estimates of component power. The main system

is an HP Proliant DL360 G5 that includes a motherboard, a CPU and memory, a low-power

laptop disk, and a high-throughput SAS I/O controller. Additional storage is provided by

two disk trays, one of which holds the input and output files, and the other of which holds

the temporary data. Each tray can house up to 12 disks. The disk trays and the main system

all have dual power supplies but were powered with one each for these experiments. For

all of these experiments, the operating system was 64-bit Ubuntu Linux with the XFS file

system.

As Table 4.5 shows, the two populated disk trays consume roughly the same power as

the main system. When a tray is fully populated with 12 disks, its idle power is 145 W; with

six disks, the idle power is 101 W, showing potential energy inefficiencies when the tray is

not fully populated. To estimate the power consumed by the memory, two 1 GB DIMMs

were installed in the system, and the system power was measured with and without the 2

GB DIMMs described in Table 4.5. These experiments showed that the 2 GB DIMMs use

7.5 W each, both during the sort and when idle.

Initial experiments to determine the optimum hardware configuration for this system

were conducted using a 10 GB data set. Even though underpopulating the disk trays seems

inefficient, the best-performing 10 GB setup uses 12 disks split across the two trays. This

effect occurs because the system’s I/O controller offers better bandwidth when both of

its channels are used than when all 12 disks use a single channel. For a 10 GB sort, the

controller provides 313±1 MB/s of I/O bandwidth when the disks are split across both trays,

but only 212±1 MB/s when the disks are confined to a single tray. The average power of the

system is 406±1 W with two trays and 347±1 W with just one tray. As a result, the better

CHAPTER 4. DESIGNING ENERGY-EFFICIENT COMPUTER SYSTEMS 39

Component Model Idle Power Sort Power
CPU Intel Xeon 5130, 2 GHz 65 W (TDP)
Memory 2×2GB PC2-5300 7.5 ± 0.5 W (each)
OS disk 1×Fujitsu SATA, 5400rpm, 60GB n/a
I/O Ctrl. LSI Logic SAS HBA 3801E n/a
Motherboard HP Proliant DL360G5 n/a
Total of above 168±1 W 181±1 W
Disk trays 2×HP MSA60, each with 101±1W 113±1 W

6×Seagate Barracuda ES, (each) (each)
SATA, 7200rpm, 500GB

Table 4.5: Specifications of the balanced fileserver.

configuration is the two-tray setup, which sorts 3863±19 records per Joule. The one-tray

setup sorts only 3038±22 records per Joule.

The 2-tray, 12-disk setup is also the point where the I/O and CPU bandwidths match.

When the number of disks is reduced to 10, the performance and CPU utilization drop, and

the power saved by eliminating two disks is outweighed by the drop in performance. When

the number of disks is increased to 14, the sort is CPU-bound, and so the performance and

CPU utilization remain the same as with 12 disks. In this case, the increase in power from

the two additional disks does not provide any performance gain. The balanced 12-disk

configuration is thus the most energy-efficient point.

Table 4.7 shows the performance and energy characteristics of this system for a 1 TB

sort. This system takes nearly three times as much power as the standard server, but it

provides over eight times the throughput. This system’s sorted records per Joule ratio is

higher than both the laptop’s score and the score estimated for GPUTeraSort, even though

it is using a much larger data set. With a 1 TB data set, the fileserver’s two cores are fully

utilized, and the I/O sorting bandwidth closely matches the CPU bandwidth. Experiments

similar to those conducted with the 10 GB data set show that this is also the optimal con-

figuration at the 1 TB scale. In both cases, the most energy-efficient and best-performing

CHAPTER 4. DESIGNING ENERGY-EFFICIENT COMPUTER SYSTEMS 40

configuration occurs when the sort is CPU-bound and the I/O bandwidth closely matches

the CPU bandwidth.

4.2.3 Summary

These experiments with balanced and unbalanced systems show that the most energy-

efficient server configuration occurs when the system is CPU-bound, and that a laptop

with an enormous mismatch between CPU and I/O sorting bandwidth is nearly as energy-

efficient as a balanced server. These results suggest that a mobile processor backed with

adequate I/O bandwidth would be a highly energy-efficient sorting system. To provide the

I/O bandwidth, laptop drives consume about five times less power than the file server’s

SATA drives while offering approximately half the bandwidth. Therefore, a promising ap-

proach to building the most energy-efficient sorting system is to use mobile-class CPUs and

disks and connect them via a high-speed I/O interconnect.

4.3 Design of the JouleSort Winner

Using the lessons from running the JouleSort benchmark on commodity hardware, the next

goal was to create an energy-efficient machine that convincingly overtook the other mea-

sured and estimated systems. For simplicity, the system was composed of commercially

available components, and Nsort was used as the software. The strategy for building this

machine was to create a balanced sorting system out of low-power components. The man-

ufacturer specifications of a variety of low-power x86 processors and mobile disks were

examined to estimate the sorting efficiency of potential systems, resulting in the config-

uration shown in Table 4.6. This machine, nicknamed CoolSort, is over 3.5 times more

energy-efficient than any of the systems described in the previous sections.

CHAPTER 4. DESIGNING ENERGY-EFFICIENT COMPUTER SYSTEMS 41

Component Model Price ($) Power (W)
CPU Intel Core 2 Duo T7600 639.99 34 (TDP)
Motherboard Asus N4L-VM DH 108.99
Case/PSU APEVIA X-Navigator 94.99

ATXA9N-BK/500
8-disk RAID card HighPoint Rocket RAID 2320 249.99 9.5
4-disk RAID card HighPoint Rocket RAID 2300 119.99 2.0
Memory (2) Kingston 1GB DDR2 667 63.99 1.9W (spec)
Disk (13) Hitachi TravelStar 5K160, 119.99 Active: 1.8

5400 rpm, 160 GB Idle: 0.85
Adapters 130.25

Total 3032.05 Active: 100
Idle: 59

Table 4.6: Components of the CoolSort machine and their retail prices at the time of pur-
chase.

4.3.1 Details of Winning Configuration

This system uses a high-end mobile CPU with five frequency states and a TDP of 34W for

the highest frequency state. The choice of motherboard was somewhat constrained; few

boards support both a mobile CPU and enough I/O bandwidth to achieve a balanced sort.

The chosen motherboard, the Asus N4L-VM DH, has two SATA connectors on the moth-

erboard and two PCI-Express slots: one 1-channel and one 16-channel. To fill those slots,

CoolSort uses two RAID controllers, one of which holds four disk drives and one of which

holds eight. Connected to those controllers and to the motherboard are 13 low-power SATA

laptop disks. According to their manufacturer specifications, their average seek time is ap-

proximately 11 ms [29], and their sequential bandwidth through the XFS file system was

measured to be 45 MB/s in experiments with CoolSort. The manufacturer specifications

list an average power consumption of 1.8 W when reading and writing and 0.85 W in the

active idle state (idle but not sleeping) [29]. For memory, CoolSort uses two 1 GB DIMMs

that each consume 1.9 W of power, according to the manufacturer specifications [35].

CHAPTER 4. DESIGNING ENERGY-EFFICIENT COMPUTER SYSTEMS 42

System Recs SRecs/J Energy (kJ) Power (W) Time (sec)
CoolSort 108 11628 ± 41 8.6 ± 0.03 99.3 ± 0.2 86.6 ± 0.4
(Table 4.6) 109 11354 ± 29 88.1 ± 0.23 100.0 ± 0.1 880.8 ± 1.5
Fileserver

1010 3425 ± 40 2920 ± 0.34 406 ± 1 7196 ± 67
(Table 4.5)

Table 4.7: Power and performance of winning JouleSort systems.

System Recs Bandwidth (MB/s) CPU util. PFInput Output Total (200 max.)

CoolSort
108 248 ± 3 222 ± 1 115 ± 1 139 ± 1%

0.65
109 238 ± 0.1 219 ± 0.4 114 ± 0.2 154 ± 0%

Fileserver 1010 274 ± 0.4 282 ± 5 139 ± 1 179 ± 2% 0.96

Table 4.8: Detailed utilization information for winning JouleSort systems, including the
number of sorted records, the sorting bandwidths and CPU utilization, and the power factor
(PF).

The optimal configuration uses 13 disks because the PCI-e RAID cards hold a maxi-

mum total of 12 disks, and the I/O performance of the motherboard controller with more

than one disk is poor. The input and output files are striped across a 6-disk array configured

via LVM2, and the remaining 7 disks are independent for the temporary data. All experi-

ments use Linux kernel 2.6.18 and the XFS file system unless otherwise stated. In the idle

state at the lowest CPU frequency, this system consumes 59.0 ± 1.3 W of power.

Tables 4.7 and 4.8 show the performance of the system, which attains 11,628 sorted

records per Joule when averaged over three consecutive runs. The pure-performance statis-

tics are reported by Nsort. Nsort was configured to use radix sort as its in-memory sort

algorithm and to use transfer sizes of 4 MB for the input-output array and 2 MB for the

temporary data. This system sorts 24% faster than GPUTeraSort and consumes an esti-

mated one-third of the power. The power use during sort is 69% more than when idle.

During the output pass, the CPU is underutilized (see Table 4.8; note that the maximum

utilization for 2 cores is 200%), and the sorting bandwidth is lower than in the input pass

CHAPTER 4. DESIGNING ENERGY-EFFICIENT COMPUTER SYSTEMS 43

because the output pass requires more random I/O. The CPU frequency state is pinned to

1660 MHz, which Section 4.3.3 shows is the most energy-efficient frequency for the sort.

4.3.2 Varying Hardware Configuration

This section examines the performance, cost efficiency, and energy efficiency of varying

the disk configuration, amount of memory, and power supply of the CoolSort system.

Disks and RAID Controllers

This section examines the relationship between the number of disks and controllers and

the system’s performance, cost efficiency, and energy efficiency. These experiments were

performed using a 5 GB data set for speed; the results should qualitatively hold for larger

data sets, since this data set is considerably larger than the available memory. The CPU

was set to its highest frequency for the experiments involving performance and cost ef-

ficiency in order to maximize these metrics, since both metrics reward performance and

do not consider power consumption. All experiments began with 2 disks attached to the

cheaper 4-disk controller, and at each step, an additional disk was added to maximize cost

effectiveness. Therefore, the 8-disk controller alone is used for configurations with 5–8

disks, and both controllers are combined for 9–12 disks. Finally, a disk is added directly

to the motherboard for the 13-disk configuration. The reason that the motherboard disk is

not used earlier is that the motherboard’s interface is slower than the controller interfaces,

creating a performance bottleneck for smaller configurations. Table 4.9 summarizes these

different hardware configurations and their prices.

Figure 4.2 shows the performance (sorted records per second) and cost efficiency

(sorted records per dollar) with increasing system size. The 13-disk configuration is

both the best-performing and most cost-efficient point. On average, each additional disk

increases system cost by about 7% and improves performance by 14%. These marginal

CHAPTER 4. DESIGNING ENERGY-EFFICIENT COMPUTER SYSTEMS 44

Disks 4-disk 8-disk Mother- Price ($)card card board
2 2 1341.82
3 3 1471.75
4 4 1596.69
5 5 1856.62
6 6 1981.56
7 7 2111.49
8 8 2236.43
9 1 8 2486.35

10 2 8 2620.28
11 3 8 2759.20
12 4 8 2893.13
13 4 8 1 3032.05

Table 4.9: CoolSort configurations with varying numbers of disks. For each number of
disks shown in the left-hand column, the next three columns show the number of disks
attached to the 4-disk controller, the 8-disk controller, and the motherboard, respectively.
A controller is removed from the system if no disks are attached to it.

changes vary; they are larger for small system sizes and smaller for large system sizes. The

5-disk point drops in cost efficiency because it requires moving from the 4-disk controller

to the more expensive 8-disk controller without a commensurate performance increase.

Although the motherboard and controllers limit the system to 13 disks, additional disks

would probably not help since the first pass of the sort is CPU-bound.

The next set of experiments determines how energy efficiency varies with with system

size. The results reflect the minimum-energy hardware configuration to support each ad-

ditional disk. The CPU frequency is pinned to 1660 MHz in these experiments to get the

best energy efficiency (see Section 4.3.3). For convenience, an extra disk was kept on the

motherboard to run the OS, but it was unused in the sort except for the 13-disk configura-

tion. The power measurements include this disk, but its power consumption is negligible at

idle (less than 1 W).

CHAPTER 4. DESIGNING ENERGY-EFFICIENT COMPUTER SYSTEMS 45

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14

Disks Used

R
ec

or
d

s
So

rt
ed

 p
er

 $
 (

x1
E

9
)

0

20

40

60

80

100

120

140

R
ec

or
d

s
So

rt
ed

 p
er

 S
ec

. (
x1

E
4)

Price-Perf.
Performance

Figure 4.2: Variation of performance and price-performance with the number of disks in
the CoolSort system.

CHAPTER 4. DESIGNING ENERGY-EFFICIENT COMPUTER SYSTEMS 46

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13

Disks Used

A
vg

. P
ow

er
 (

W
)

Sorting Power
Idle Power

Figure 4.3: Variation of power consumption with the number of disks in the CoolSort
system.

CHAPTER 4. DESIGNING ENERGY-EFFICIENT COMPUTER SYSTEMS 47

Figure 4.3 shows idle power at the lowest frequency state versus average power during

sort at 1660 MHz for the system configurations shown in Table 4.9. With the system

idle and only the motherboard disk installed, the 8-disk controller uses 9.5 W and the 4-

disk controller uses 2.0 W. Thus, system sizes between 2 and 4 disks use only the 4-disk

controller, sizes between 5 and 8 disks use only the 8-disk controller, and both controllers

are used for 9 or more disks. Figure 4.3 shows jumps in power consumption at these

transitions. The idle line illustrates that the marginal power consumption of an idle disk is

0.95 ± 0.1 W. The marginal power of an actively sorting disk, on the other hand, averages

4.3±1.0 W at sizes smaller than 8 disks and 3.4±1.0 W for sizes of 9 or more disks. These

increases reflect not only the disk’s power consumption, but also the end-to-end dynamic

utilization of the CPU, disk controllers, and other components.

Figure 4.4 shows the energy efficiency as the number of disks used in the sort is varied.

The curve is similar to the price-performance curve in Figure 4.2. The average increase in

energy at each step is 6%, while the average increase in performance is about 14%. The 5-

disk point is again a local minimum, because it incurs the power consumption of the larger

8-disk controller without enough disks to realize its potential performance benefits. The

sort fully utilizes the CPU in the most energy-efficient configuration.

These experiments support two main observations. First, the similar shapes of the cost-

and energy-efficiency curves reflect that the base dollar and energy costs of the system are

high compared to the marginal dollar and energy costs of disks. If the system had used

server-class disks, which are similar in cost to mobile disks but consume five times the

power, the shapes of the cost- and energy-efficiency curves would differ from each other.

Second, for the components chosen, the best-performing, most cost-efficient, and most

energy-efficient configurations are identical, except for the CPU frequency. This is the

point where the I/O bandwidth balances the CPU bandwidth, and the sort is CPU-bound in

the input pass.

CHAPTER 4. DESIGNING ENERGY-EFFICIENT COMPUTER SYSTEMS 48

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10 11 12 13

Disks Used

R
ec

or
d

s
So

rt
ed

 p
er

 J
ou

le

0

20

40

60

80

100

120

140

R
ec

or
d

s
So

rt
ed

 P
er

 S
ec

. (
x1

E
4)

Recs/J
Performance

Figure 4.4: Variation of energy efficiency with the number of disks in the CoolSort system.

CHAPTER 4. DESIGNING ENERGY-EFFICIENT COMPUTER SYSTEMS 49

Memory and Power Supply

For two-pass sorts, which do not fit in memory and thus require temporary writes to disk,

adding memory to the system does not necessarily improve performance. For most of the

experiments described in this chapter, the Nsort software elected to use only a fraction of

the available memory. Experimenting with only one 1 GB DIMM in the system resulted

in power use and execution time that were statistically indistinguishable from the 2-DIMM

configuration outlined in Section 4.3.1. The power consumption difference for the idle state

also fell within measurement error.

The configuration described in Section 4.3.1 used a 500 W power supply that came

with the system’s case. Since many power supplies are inefficient at low loads, and since

CoolSort’s 100 W is far below the power supply’s rated load, experiments replacing the

500 W power supply with a 145 W power supply were conducted. However, the power

consumption both while sorting and while idle increased by 2 W over the original 500 W

power supply. This results suggests that at 68% load or less, efficiencies of the two power

supplies are similar. It also suggests that power supply efficiency varies on a case-by-

case basis; since the goal of this work was not to exhaustively compare individual power

supplies, the 500 W power supply was chosen and no further experiments were conducted.

The power factors for the laptop- and desktop-based systems described in this chapter,

including CoolSort, are far below 1.0. Low power factors are problematic in data cen-

ters, because they require power delivery mechanisms to be overprovisioned to carry addi-

tional current. Utility companies often charge for this extra provisioning. For systems like

CoolSort to be adopted in data centers, they will need to use power supplies that provide

power-factor correction, as server power supplies do.

CHAPTER 4. DESIGNING ENERGY-EFFICIENT COMPUTER SYSTEMS 50

0

50

100

150

200

996 1328 1660 1992 2324 On
Demand

CPU Freq. (MHz)

A
vg

. P
ow

er
 (

W
)

0

2000

4000

6000

8000

10000

12000

R
ec

or
d

s
So

rt
ed

 p
er

 J
ou

le

XFS, radix (W) Reiser, radix (W) XFS, merge (W)
XFS, radix (SRecs/J) Reiser, radix (SRecs/J) XFS, merge (SRecs/J)

Figure 4.5: Variation of average power and energy efficiency with CPU frequency and
filesystem for a 10 GB sort on CoolSort.

CHAPTER 4. DESIGNING ENERGY-EFFICIENT COMPUTER SYSTEMS 51

4.3.3 Varying Software Configuration

The next experiments vary the file system and in-memory sorting algorithm to see how they

affect energy efficiency. The winning 10 GB configuration uses the XFS file system and a

radix sort. Figure 4.5 examines the effect of changing the file system to ReiserFS and the

sort algorithm to merge sort at different CPU frequencies.

As expected, power consumption steadily increases with frequency in all cases. The

power consumptions of XFS with radix sort and merge sort are similar at all frequencies.

ReiserFS, however, consumes less power and also is less energy-efficient. All three config-

urations show improved energy efficiency from 996 MHz to 1660 MHz, and then level off

or decrease. This result indicates that the sorts are CPU-bound, and thus benefit from in-

creased CPU performance, at the lower frequencies. ReiserFS shows a 26% improvement

in performance between the lowest and highest frequencies, while XFS radix improves

only 16% and XFS merge improves only by 20%.

ReiserFS has lower energy efficiency mainly because it provides less sequential band-

width, and thus lower performance, than XFS. Although each configuration was tuned, this

result may be an artifact of this particular system and not an inherent flaw of ReiserFS.

Similarly, the merge sort has lower energy efficiency than radix sort entirely because its

performance is worse.

The rightmost part of the graph shows the power and energy efficiency of the Linux on-

demand CPU frequency scaling policy, which is within 10% of the fastest execution time

and 15% of the lowest power for all three configurations. For ReiserFS, the on-demand

policy offers the same energy efficiency as the best configuration. In summary, these ex-

periments show that the algorithms and underlying software used for sort affect energy

efficiency mainly through performance, and that the question of which sorting algorithm is

most energy-efficient is still open.

CHAPTER 4. DESIGNING ENERGY-EFFICIENT COMPUTER SYSTEMS 52

4.3.4 CPU and I/O Dynamic Power Variation

To determine the individual contributions of the I/O subsystem (disks plus controllers)

and the CPU subsystem (CPU plus memory) to the dynamic power variation during sort,

several microbenchmarks were run. In the 12-disk configuration, the system consumes 33.5

W more power during sort than when the system is idle with the same CPU frequency. This

dynamic variation accounts for nearly 35% of the total power during sort. The experiments

described below suggest that the I/O subsystem consumes a greater fraction of this dynamic

power increase than the CPU subsystem.

The first experiment was a disk-intensive microbenchmark intended to determine the

contribution of the I/O subsystem. This experiment copied data from a 6-disk array to

another 6-disk array, using the same average disk bandwidth as the 12-disk sort. During

this experiment, the system power increased by 30.5 W over the idle power. The CPU

utilization was 66% out of a possible 200% for 2 cores. The next experiment was designed

to approximate the contribution of the CPU subsystem, and consisted of repeatedly sorting

a small input file mounted on a RAM disk. This test pegged the CPU at 200% utilization,

and the power increase was 15.7 W over the idle power.

Using the above results and assuming that CPU subsystem power increases linearly

with CPU utilization, its contribution to the total power increase during the 12-disk sort

can be estimated as follows. During the sort, CPU utilization averaged 118% (59% per

core). Scaling the power increase of 15.7 W at 200% utilization down by 0.59 yields a

9.2 W contribution from the CPU subsystem during sort. Now the contribution of the I/O

subsystem can be estimated by subtracting the estimated CPU power from the total power

increase during the copying experiment. This estimate of 30.5 W−0.33×15.7 W = 25.3 W.

Combining these estimates yields a total dynamic power increase of 34.5 W, which comes

within 3% of the 33.5 W measured increase during the 12-disk sort. These tests thus imply

CHAPTER 4. DESIGNING ENERGY-EFFICIENT COMPUTER SYSTEMS 53

that about 75% of the power increase during sort is from the I/O subsystem and 25% from

the CPU subsystem. Experiments done at smaller system sizes found similar proportions.

4.3.5 Summary

This section described the winning Daytona 100 GB JouleSort system, which is over 3.5

times as energy efficient as last year’s PennySort winner, GPUTeraSort. For this system,

the most energy-efficient configuration is also the best-performing and most cost-efficient,

a relationship that may be the result of using mobile disks rather than server disks. Experi-

ments showed that the choice of filesystem and in-memory sort algorithm mainly affected

energy efficiency through performance rather than through power consumption for this sys-

tem.

The goal of this work was to build a balanced system with low-power off-the-shelf

components targeted for the 100 GB scale. Unfortunately, because of the available sizes

of mobile disks, the CoolSort machine could not easily be scaled to the 1 TB category.

Other types of systems may be more efficient in the 10 GB and 1 TB categories, but for

completeness, Tables 4.7 and 4.8 show the best configurations for those categories that

were encountered in these experiments.

4.4 Other Energy-Efficiency Metrics

Although JouleSort addresses a computer system’s energy efficiency, energy is just one

piece of the system’s total cost of ownership (TCO). From a system purchaser’s perspective,

a TCO-Sort would be the most desirable sort benchmark; however, the components of

TCO vary widely from user to user. Combining JouleSort and PennySort to benchmark

the costs of purchasing and powering a system is a possible first step, although the current

sort benchmark metrics omit reliability, manageability, and security issues. This section

examines alternative possible metrics for an energy-aware sort benchmark using various

CHAPTER 4. DESIGNING ENERGY-EFFICIENT COMPUTER SYSTEMS 54

Name Description Price ($) Avg Pwr (W)
Gumstix Used in embedded devices 376.50 2
Soekris Used for networking apps 477.50 6
VIA Multimedia machine with flash drives 1156.60 15

Table 4.10: Low-power machines benchmarked by Meza et al. [45].

weighings of price, performance, and power, and compares the types of systems that each

favors. All of these comparisons are subject to the caveats described in Sections 4.1.1

and 3.2.2: that is, they illuminate broad trends, but they are not precise measurements.

The machines compared in this section are the historical PennySort, Terabyte Sort, and

MinuteSort benchmark winners discussed in Section 4.1, the balanced fileserver described

in Section 4.2.2, the CoolSort machine discussed in Section 4.3.1, and three additional

ultra-low-power sorting systems designed by Justin Meza et al [45]. Table 4.10 summa-

rizes these systems and their JouleSort results. The first is an ARM-based Gumstix device,

typically used in embedded devices. The second is an AMD Geode-based Soekris board,

designed for routers and networking equipment. The final machine is a VIA picoITX em-

bedded multimedia machine with flash hard drives.

Figures 4.6 and 4.7 show the PennySort and JouleSort scores, respectively, of all of

these systems. Note that the ultra-low-power machines were only able to sort very small

data sets (less than 10 GB) with the amount of storage they had; for purposes of compar-

ison, CoolSort’s performance on a similarly sized data set (CoolSort-1 pass) is included.

All of these scores are normalized to the lowest-performing system in order to facilitate

comparisons among the different metrics in addition to the different machines. Note that

the balanced fileserver and the winners of the purely performance-based sort benchmarks

are not included in the comparisons of metrics involving cost, such as PennySort.

The PennySort results are dominated by GPUTeraSort, followed by two recent Pen-

nySort winners (BSIS [30] and Sheenk Sort) and CoolSort. Since mobile components,

CHAPTER 4. DESIGNING ENERGY-EFFICIENT COMPUTER SYSTEMS 55

0

5

10

15

20

25

30

35

40

Co
ol

So
rt

 1
-

pa
ss

Co
ol

So
rt

 2
-

pa
ss

G
um

st
ix

So
ek

ri
s

VI
A

BS
IS

 (
20

06
)

G
PU

Te
ra

So
rt

(2
00

6)

Po
st

m
an

So
rt

 (
20

05
)

Sh
ee

nk
So

rt
(2

00
5)

TH
So

rt
(2

00
4)

D
M

So
rt

(2
00

2)

H
M

So
rt

(2
00

0)

N
TS

or
t

(1
99

8)

Energy-aware systems PennySort winners

N
or

m
al

iz
ed

 P
en

n
yS

or
t

Sc
or

e

Figure 4.6: PennySort scores of energy-aware systems and previous PennySort benchmark
winners, normalized to the lowest-scoring system.

such as those used in CoolSort, usually cost a premium compared to their desktop equiv-

alents, this result is somewhat surprising. This cost premium also penalizes the ultra-low-

power components used in the other energy-aware systems, resulting in their low rankings

according to this metric.

The JouleSort results in Figure 4.7 show that all of the energy-aware machines out-

perform all of the historical PennySort winners, although the Gumstix, the fileserver, and

GPUTeraSort are roughly equivalent. Among the ultra-low-power machines, the VIA in

particular comes close to the energy efficiency of CoolSort’s two-pass sorts. This result

illustrates the energy-efficiency potential of ultra-low-power, flash-based systems.

Figures 4.8 and 4.9 combine performance, price, and power in two different ways.

Figure 4.8 evaluates systems based on their JouleSort rating per dollar (records per Joule per

CHAPTER 4. DESIGNING ENERGY-EFFICIENT COMPUTER SYSTEMS 56

0

10

20

30

40

50

60

70

80

90

100

Co
ol

So
rt

 1
-

pa
ss

Co
ol

So
rt

 2
-

pa
ss

G
um

st
ix

So
ek

ri
s

VI
A

Fi
le

se
rv

er

BS
IS

 (
20

06
)

G
PU

Te
ra

So
rt

(2
00

6)
Po

st
m

an
So

rt
 (

20
05

)
Sh

ee
nk

So
rt

(2
00

5)
TH

So
rt

(2
00

4)
D

M
So

rt
(2

00
2)

H
M

So
rt

(2
00

0)
N

TS
or

t
(1

99
8)

N
eo

So
rt

(2
00

6)

SC
S

(2
00

5)

N
so

rt
 (

20
04

)

SP
So

rt
(2

00
0)

H
PV

M
So

rt
(1

99
9-

20
00

)
N

ow
So

rt
(1

99
7-

19
98

)

Energy-aware systems PennySort winners MinuteSort and TerabyteSort
winners

N
or

m
al

iz
ed

 J
ou

le
So

rt
 S

co
re

Figure 4.7: JouleSort scores of energy-aware systems and previous PennySort, MinuteSort,
and Terabyte Sort benchmark winners, normalized to the lowest-scoring system.

CHAPTER 4. DESIGNING ENERGY-EFFICIENT COMPUTER SYSTEMS 57

0

5

10

15

20

25

30

35

40

45

Co
ol

So
rt

 1
-

pa
ss

Co
ol

So
rt

 2
-

pa
ss

G
um

st
ix

So
ek

ri
s

VI
A

BS
IS

 (
20

06
)

G
PU

Te
ra

So
rt

(2
00

6)

Po
st

m
an

So
rt

 (
20

05
)

Sh
ee

nk
So

rt
(2

00
5)

TH
So

rt
(2

00
4)

D
M

So
rt

(2
00

2)

H
M

So
rt

(2
00

0)

N
TS

or
t

(1
99

8)

Energy-aware systems PennySort winners

N
or

m
al

iz
ed

 (
R

ec
or

d
s

/
J

/
$

)

Figure 4.8: Records sorted per Joule per dollar of purchase price of energy-aware systems
and previous PennySort winners, normalized to the lowest-scoring system.

dollar), using the list price of the system. Compared to the JouleSort and PennySort metrics,

this metric gives extra weight to resource constraints: the PennySort and JouleSort metrics

can be abstracted as performance divided by a resource constraint (price or power), while

this metric is equivalent to performance divided by the product of two resource constraints.

Since price and power consumption somewhat correlate, as explained in Section 4.1.2,

this metric should favor smaller systems with lower power and lower price. Indeed, this

metric is where the ultra-low-power systems shine, far outstripping the historical PennySort

winners and the other energy-efficient systems. CoolSort and the minimally configured

Sheenk Sort come in a distant fourth and fifth. In a situation where resource constraints are

the primary concern, these ultra-low-power machines are the best choice.

CHAPTER 4. DESIGNING ENERGY-EFFICIENT COMPUTER SYSTEMS 58

1

10

100

1000

10000

Co
ol

So
rt

 1
-

pa
ss

Co
ol

So
rt

 2
-

pa
ss

G
um

st
ix

So
ek

ri
s

VI
A

BS
IS

 (
20

06
)

G
PU

Te
ra

So
rt

(2
00

6)

Po
st

m
an

So
rt

 (
20

05
)

Sh
ee

nk
So

rt
(2

00
5)

TH
So

rt
(2

00
4)

D
M

So
rt

(2
00

2)

H
M

So
rt

(2
00

0)

N
TS

or
t

(1
99

8)
Energy-aware systems PennySort winners

N
or

m
al

iz
ed

 J
ou

le
So

rt
-P

en
n

yS
or

t
P

ro
d

u
ct

Figure 4.9: Product of JouleSort and PennySort scores of energy-aware systems and previ-
ous PennySort winners, on a logarithmic scale, normalized to the lowest-scoring system.

CHAPTER 4. DESIGNING ENERGY-EFFICIENT COMPUTER SYSTEMS 59

Figure 4.9, on the other hand, keeps PennySort and JouleSort’s one-to-one balance

between performance and resource constraints by multiplying the PennySort and JouleSort

ratings to get a combination metric in Records2/(Joule × sec), which is normalized to the

lowest-scoring system in the figure. Because of the great disparities in this rating among the

systems compared, Figure 4.9 uses a logarithmic scale. According to this metric, CoolSort

gives the best balance of performance and price/power, followed distantly by the VIA, the

Soekris, and the recent PennySort winners. This combined metric shows that the additional

cost of high-performance, low-power components does not prohibit them from being good

choices when price is taken into consideration.

Figure 4.10 does not consider price, but instead provides a different weighing of perfor-

mance and power than the JouleSort metric. Rather than weighing performance and power

equally, it uses the energy-delay product, which privileges performance. The metric used is

(Records/Joule) × (Records/sec.); because the machines being compared sorted varying

numbers of records, execution time must be normalized to the workload size to provide

a fairer comparison. Note that this metric is the inverse of the energy-delay product, so

higher scores are better. Again, because of the great disparities in this metric among the

different systems, Figure 4.10 uses a logarithmic scale.

Because of the additional weight given to performance, the MinuteSort and Terabyte

Sort winners fare much better with this metric than with the original JouleSort metric, as

does the balanced fileserver. In general, this metric clearly favors larger systems than the

JouleSort metric. However, CoolSort remains the highest-ranked system according to this

metric, and the ultra-low-power VIA is surprisingly competitive at this metric that should

be biased against it.

Finally, Figure 4.11 attempts to synthesize a TCO estimate and compare the systems

based on their sorting performance per dollar of TCO. The performance metric used is the

number of records sorted per unit time. The metric used to approximate TCO is the initial

cost of the hardware plus an estimate of the energy cost of running the sort for three years

CHAPTER 4. DESIGNING ENERGY-EFFICIENT COMPUTER SYSTEMS 60

1

10

100

1000

10000

Co
ol

So
rt

 1
-

pa
ss

Co
ol

So
rt

 2
-

pa
ss

G
um

st
ix

So
ek

ri
s

VI
A

Fi
le

se
rv

er

BS
IS

 (
20

06
)

G
PU

Te
ra

So
rt

(2
00

6)
Po

st
m

an
So

rt
 (

20
05

)
Sh

ee
nk

So
rt

(2
00

5)
TH

So
rt

(2
00

4)
D

M
So

rt
(2

00
2)

H
M

So
rt

(2
00

0)
N

TS
or

t
(1

99
8)

N
eo

So
rt

(2
00

6)

SC
S

(2
00

5)

N
so

rt
 (

20
04

)

SP
So

rt
(2

00
0)

H
PV

M
So

rt
(1

99
9-

20
00

)
N

ow
So

rt
(1

99
7-

19
98

)

Energy-aware systems PennySort winners MinuteSort and TerabyteSort
winners

N
or

m
al

iz
ed

 (
1/

E
n

er
gy

-D
el

ay
)

Figure 4.10: Reciprocal of energy-delay product of energy-aware systems and previous
sort benchmark winners, on a logarithmic scale, normalized to the lowest-scoring system.

CHAPTER 4. DESIGNING ENERGY-EFFICIENT COMPUTER SYSTEMS 61

0

4

8

12

16

20

24

28

32

Co
ol

So
rt

 1
-

pa
ss

Co
ol

So
rt

 2
-

pa
ss

G
um

st
ix

So
ek

ri
s

VI
A

BS
IS

 (
20

06
)

G
PU

Te
ra

So
rt

(2
00

6)

Po
st

m
an

So
rt

 (
20

05
)

Sh
ee

nk
So

rt
(2

00
5)

TH
So

rt
(2

00
4)

D
M

So
rt

(2
00

2)

H
M

So
rt

(2
00

0)

N
TS

or
t

(1
99

8)

Energy-aware systems PennySort winners

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

/T
C

O
$

Figure 4.11: Performance-TCO ratio for energy-aware systems, normalized to the lowest-
scoring system.

CHAPTER 4. DESIGNING ENERGY-EFFICIENT COMPUTER SYSTEMS 62

at a cost of $100 per megawatt-hour [52]. The TCO estimates in the graph are computed

according to Equation 4.1. This equation does not include cooling or burdened costs.

TCO ($) = Price + AvgPwr (W) ×
24 hr
day

×
365 days

yr
× 3 yr ×

$100
MWhr

×
MW

1E6 W
= Price + 2.628 × AvgPwr (4.1)

Over three years, the TCO is thus the initial cost of hardware plus 2.6 times the average

power in Watts. For all of the machines in Figure 4.11, the initial purchase price is a larger

factor in this TCO metric than the estimated cost of energy; the initial cost is particularly

dominant for the energy-aware machines and the early PennySort winners. Using this

TCO-aware metric, GPUTeraSort fares best among the two-pass sorting configurations,

followed by CoolSort and Sheenk Sort. The overall graph is similar to the PennySort graph

(Figure 4.6), with slightly lower disparities between the best- and worst-scoring systems.

If cooling costs are factored in, the contribution of power consumption to the TCO rises,

and the graph begins to look more like the JouleSort graph (Figure 4.7). CoolSort passes

GPUTeraSort as the highest scorer when cooling costs reach 0.8 W per Watt of power

consumed by the computing equipment; in data centers, the cost of cooling is 0.5 to 1 W

for each Watt of compute power [50].

Comparing these alternative metrics leads to several conclusions. First, low-power

components are excellent choices for energy efficiency even when cost is taken into ac-

count. Second, although different weighings of performance and power privilege different

system classes, the CoolSort mobile fileserver and the VIA multimedia machine are fairly

insensitive to changes in these weighings, remaining at or near the top tier of systems for

all of these metrics. These results indicate that systems with high JouleSort benchmark

scores do not become impractical when cost or performance concerns are emphasized.

CHAPTER 4. DESIGNING ENERGY-EFFICIENT COMPUTER SYSTEMS 63

4.5 Conclusions

This chapter compared the JouleSort scores of a variety of systems, including the esti-

mated scores of previous sort benchmark winners and the measured scores of off-the-shelf

and specially designed machines. It also presented CoolSort, the machine which achieves

the highest known JouleSort score, with over 3.5 times the energy efficiency of previous

sort benchmark winners. CoolSort is a fileserver built from a mobile processor and 13 lap-

top disks connected through server-class I/O interfaces, an unusual design that highlights

the potential of low-power mobile components in the data center. While CoolSort was op-

timized specifically for the JouleSort benchmark, this type of design has the potential to

be broadly useful. Finally, this chapter examined alternative benchmark metrics weighing

different combinations of price, performance, and power. Different combinations of these

metrics privilege different types of systems, but CoolSort and two ultra-low-power sorting

systems scored well across several different metrics.

These benchmark results show that JouleSort continues the Sort Benchmark’s tradi-

tion of identifying promising new technologies. CoolSort’s benchmark scores illustrate

that a server composed of mobile-class components is highly energy-efficient, without

being prohibitively costly or low-performance. The VIA system’s success demonstrates

the potential of ultra-low-power processors and flash storage for energy-efficient execution

of data-intensive applications. Finally, GPUTeraSort’s success among the historical sort

benchmark winners shows that the high performance of GPUs comes at a relatively small

energy cost, although this observation may not continue to hold as GPUs grow ever more

power-hungry.

JouleSort does not address all possible energy-efficiency concerns. It targets data-

intensive applications running at peak energy efficiency, which is equivalent to peak

utilization for today’s technologies. This design choice differs from the full-system

SPECpower ssj benchmark, which is CPU-intensive and compares the average energy

CHAPTER 4. DESIGNING ENERGY-EFFICIENT COMPUTER SYSTEMS 64

efficiency across the utilization spectrum. As a single-system benchmark, JouleSort also

omits some metrics of importance in the data center. It does not account for losses in

power delivery at either the data center or the rack level, nor does it account for the

building cooling used to maintain the ambient temperature around the system. However,

the JouleSort benchmark is relevant to an important class of systems and has already led to

innovations and insights in energy-efficient system design.

Chapter 5

Power Modeling Background

65

CHAPTER 5. POWER MODELING BACKGROUND 66

Accurate models of power consumption are crucial components of many schemes to

improve the energy efficiency of computing equipment. In the initial design of components

and systems, power models are necessary because it is not feasible to build physical systems

to assess every design choice’s effect on power consumption. In the day-to-day operation

of computer systems, users and data center operators need to know how their usage patterns

affect a machine’s power consumption in order to maximize energy efficiency, whether in a

single system or over an ensemble of systems. The next three chapters of this thesis address

power models appropriate for the real-time power management needs of the latter groups.

This chapter enumerates the desirable properties of this sort of power model and assesses

the suitability of previously proposed models based on these properties. Chapters 6 and 7

propose and evaluate a specific method for generating a family of high-level, real-time

power models. They show that this method creates models that are not only accurate, but

also general and portable to a broad range of systems.

5.1 Power Modeling Goals

An ideal power modeling framework suitable for use in real-time scheduling decisions

would meet several design criteria, which this section describes. Physical power measure-

ments alone cannot meet these criteria, since they cannot predict future power consump-

tion, nor do they provide a link between resource usage and power consumption, which is

necessary for energy-efficiency optimizations.

Full-system: The models should relate usage information to the power of the entire

system rather than an individual component.

Accurate: The model must be sufficiently accurate to enable energy-efficiency opti-

mizations. In this work, we define accuracy as less than 10% error in the average case,

although higher accuracies are certainly better and may be necessary for some optimiza-

tions.

CHAPTER 5. POWER MODELING BACKGROUND 67

Fast: The model must generate predictions sufficiently quickly to be useful in real-time

optimizations; this work assumes that one prediction per second is sufficiently fast.

Generic and Portable: The modeling framework should apply to as many systems as

possible. It should work for different classes of systems (mobile, desktop, and enterprise);

different processor families and different memory technologies; different power footprints

and dynamic ranges; and different balances of components, rather than assuming that any

particular component will dominate the system. It should be easy to generate models for

a new system, and doing so should require neither exhaustive tuning nor extensive design

space exploration.

Inexpensive: Generating and using the model should not require expensive equipment.

Non-intrusive and low-overhead: Collecting the model inputs should not require in-

trusive adjustments to the hardware of the system, nor should it have significant software

overhead.

Simple: The model should be as simple as possible, both in terms of the number of in-

puts and the complexity of the model, while still providing sufficiently accurate predictions

to enable energy-saving optimizations.

5.2 Power Modeling Approaches

This section examines three approaches to power modeling: simulation-based detailed

models, detailed analytical models, and high-level black-box models. It discusses previ-

ous work using each approach and explains that work’s advantages and disadvantages with

respect to the goals outlined in Section 5.1. This thesis does not discuss thermal modeling,

although thermal models similar to some of the power models described in this chapter have

been developed at both the processor [61] and full-system [26] levels. Deploying thermal

models requires sensor infrastructure that power modeling does not, since the current am-

bient temperature is a major factor in temperature prediction. Furthermore, thermal models

CHAPTER 5. POWER MODELING BACKGROUND 68

tend to be more complicated than power models, since power is an instantaneous quantity

and temperature is affected by temperatures nearby in both time and space. Therefore, this

discussion is restricted to power models.

5.2.1 Simulation-based Power Models

One approach to power modeling is to integrate it into software that simulates the execu-

tion of programs on a particular system or component. This approach is typically used

by system designers who have already written performance simulators of their prospective

systems and wish to understand their power consumption characteristics as well. These

models range in detail and accuracy from fine-grained models with detailed circuit knowl-

edge to models that use a combination of architectural information and circuit parameters.

They can be highly accurate and do not require the use of expensive equipment, but they

typically fail to meet the rest of the goals for real-time models described in Section 5.1.

First, they are almost always component-specific rather than full-system models, since

it is difficult to obtain such detailed knowledge of the many components in a computer.

They also tend to be slow, since making power predictions requires fully simulating the

component or system. They are neither generic nor portable, relying on the specific imple-

mentation details of a particular component and requiring specialized knowledge even to

be ported to components in the same family. They are not necessarily low-overhead, rely-

ing on knowledge of the specific instructions being executed on a machine. Finally, they

are not simple: they require a great deal of information about the system architecture and

state, and require simulation in order to relate that information to the power consumption.

Despite these models’ shortcomings for real-time use, however, their high accuracy makes

them worth examining both as possible upper bounds on accuracy and for their insights

about component or system behavior.

CHAPTER 5. POWER MODELING BACKGROUND 69

One of the first processor power models to use architectural information rather than

detailed circuit knowledge was Wattch, proposed by Brooks et al. in 2000 [8]. Wattch

integrates into the widely used SimpleScalar performance simulator [9], adding power pre-

dictions to that simulator’s performance information. Wattch abstracts the structures on

a processor into four main categories: array structures such as caches and register files;

fully-associative content-addressable memories such as TLBs; combinational logic such as

functional units; and clock-related circuitry. It leverages the CACTI cache models [76] to

estimate the power usage of each structure based on that structure’s size and number of

ports, the process technology, the amount of switching activity, the supply voltage, and the

clock frequency; this approach yields processor power estimates with an average error of

less than 15% (30% at the high end of the power range). Since it is processor-specific and

based on detailed knowledge of individual processor structures, the Wattch approach is too

low-level for a portable real-time full-system power modeling framework.

A higher-level approach was used in the Tempo simulator by Shafi et al. to simulate

the power consumption of the PowerPC 405GP embedded system-on-a-chip [60]. The

model associates energy consumption with individual architectural events, such as data

cache misses or TLB reads, and then predicts the energy consumption by counting these

events: that is, Epred = Eidle +Σ(ei×ni), where each i is an architectural event whose energy

ei is multiplied by the number of times it occurs, ni. To generate this model, the authors use

a data acquisition system to measure the voltage drops across different parts of the chip at a

10 KHz frequency while running 300 detailed microbenchmarks to isolate the architectural

events of interest. This approach is accurate within 5% on average and generates simpler

models than Wattch, but it requires detailed knowledge of the system both in the hardware

wiring and in the creation of microbenchmarks. The infrastructure for generating the model

is also both intrusive and expensive.

CHAPTER 5. POWER MODELING BACKGROUND 70

The SoftWatt power simulator proposed by Gurumurthi et al. is unusual in that it mod-

els not only the CPU, but also the memory hierarchy and disk [25]. It postprocesses in-

formation logs from the SimOS performance simulator [59]. The CPU and memory are

modeled similarly to Wattch, while the disk model is based on the manufacturer’s specifica-

tion of the power and energy costs of transitioning to and from low-power states. SoftWatt

comes closer to being a full-system model than Wattch or Tempo, but it shares their other

major shortcomings: it requires specialized component knowledge, it is slow, and it is not

simple.

5.2.2 Detailed Analytical Power Models

Power models can be constructed without simulation by periodically collecting hardware

and software metrics at runtime. These models often rely on processor performance coun-

ters, which are hardware registers that can be configured to count various kinds of microar-

chitectural events, such as instructions retired or branch mispredictions. The number of

performance counter registers and the events that can be counted vary among manufactur-

ers and processor families, but these registers are present in all major processors, and there

is a great deal of overlap in the types of events that can be counted. In general, the number

of countable events exceeds the number of performance counter registers, so that only a

small subset of the possible events can be counted at any one time. Azimi et al. proposed a

methodology, which is used in many of these models, for time-multiplexing different sets

of events on the performance counter registers [3]. This approach allows many more events

to be monitored, at the price of increased overhead and lower accuracy, since the counts for

a particular event are sampled rather than continuously monitored.

Joseph and Martonosi adapted the Wattch processor power models [8] to develop run-

time, performance-counter-based power models for the Compaq Alpha 21264 and the In-

tel Pentium Pro [33]. Using the circuit-level and microarchitectural knowledge from the

CHAPTER 5. POWER MODELING BACKGROUND 71

Wattch models, they correlated performance counter events with inputs to the Wattch mod-

els, resulting in a model based on 9 performance counters for the 21264 and 12 performance

counters for the Pentium Pro. To capture the dynamic power due to data-dependent switch-

ing, they periodically sample the population counts of registers to get an idea of the amount

of switching taking place. In contrast to the simulation-based models, this model is real-

time. However, it still relies on specialized hardware knowledge, which limits its generality

and portability, and it still applies to the processor component rather than the full system.

Isci and Martonosi developed real-time models for the Pentium 4 based on performance

counters [32]. Because their goal was to facilitate thermal optimizations, they divided the

processor into 22 units based on physical components on the die, and sought to estimate

the overall power as well as the power of each unit. Their final model used 15 performance

counters, which requires time-multiplexing into four event sets. Sixteen of the 22 units used

linear models; the other six, all of which were issue-logic units, used piecewise linear mod-

els. The model is real-time and highly accurate, and it yields relatively simple equations

for each of the models. However, it necessarily relies on detailed microarchitectural and

layout knowledge for a particular processor, and it models only the processor component.

Kadayif et al. used performance counters to model the energy consumption of the Sun

UltraSPARC memory hierarchy, with the goal of synthesizing the manufacturer-provided

performance counters into “virtual” counters for energy events [34]. They use eight perfor-

mance counters and combine them with knowledge about the size, design, and technology

of the caches and memory to provide energy estimates. These estimates are real-time and

fairly simple, but they rely on specific hardware design information, and they are limited to

the memory subsystem.

These detailed analytical models provide a middle ground between the simulation-

based models discussed in the previous section and the high-level, black-box models cov-

ered in the next section. While these detailed component models are inappropriate for

CHAPTER 5. POWER MODELING BACKGROUND 72

generic and portable real-time, full-system modeling, they provide insight into the accu-

racy sacrificed by a black-box approach and into the kinds of specialized information that

could augment a generic model if needed for accuracy.

5.2.3 High-level Black-box Power Models

The final approach to power modeling, and the one most conducive to the goals outlined

in Section 5.1, is to construct a real-time power model based solely on fitting a model to

the real-time metrics collected and the corresponding AC power measurements, without

relying on implementation knowledge. The general procedure is to calibrate the model by

running a suite of synthetic benchmarks designed to generate a range of values for each

metric; for example, if the number of floating-point instructions is one of the metrics col-

lected, the synthetic benchmarks should stress the floating-point unit at various intensities.

A variety of these black-box models have been proposed, usually in the context of facili-

tating energy-efficiency optimizations on a particular component or machine. This section

examines the types of models that have been used in previous studies. The following two

chapters then present a systematic study of several of these models, examining their gener-

ality and portability over a wide range of systems, and illuminating the trade-offs between

model simplicity and accuracy for individual machines.

Processor and Memory Models

At the processor level, Bellosa’s power models for the Pentium II were some of the first to

correlate power consumption with performance counter events [6]. He found linear corre-

lations between power consumption and each of four quantities measured by performance

counters: integer micro-operations retired, floating point operations, L2 cache references,

and main memory references.

CHAPTER 5. POWER MODELING BACKGROUND 73

Several studies have used performance counters to understand when an application is

processor-bound versus memory-bound in order to optimize the power budgets for proces-

sor and memory, usually by dynamically scaling the processor frequency. Weissel used the

performance counters for memory requests per cycle and instructions retired per cycle to

inform frequency scaling choices [75]; Kotla et al. used the L1 and L3 hit rate counters

and memory references to enable similar optimizations on a quad-core PowerPC [36]. In

a server environment, Felter et al. proposed dynamic power budgeting between processor

and memory to enable less conservative static power budgeting; they showed that processor

power linearly varied with the number of instructions dispatched and memory power with

memory bandwidth for a simulated IBM POWER4 processor and its memory system [19].

Finally, Contreras and Martonosi created a highly accurate linear model of the power

consumption of an Intel XScale processor and its memory system by using performance

counters for data dependency stalls, instruction- and data-TLB misses, data cache misses,

and instructions executed [12]. While all of these processor and memory models are simple,

fast, and low-overhead, they do not model the full-system power consumption, and their

generality and portability have not been tested.

Single-System Models

At the full-system level, Li and John estimated the power consumption of OS routines by

creating performance-counter-based linear models [38]. They examine per-routine models

using counters for cycles and graduated instructions and contrast them with models using

up to seven performance counters but using no knowledge of the software routines running,

concluding that the per-routine models alone are consistently accurate.

Cignetti et al. developed a full-system energy model for the Palm IIIE personal digital

assistant [10]. They divide the device into eight major power-consuming components: the

CPU, the LCD, the backlight, the pen, the keypad, the serial port, the infrared port, and the

sound system. They then model power for each as a constant function of its power state,

CHAPTER 5. POWER MODELING BACKGROUND 74

and they instrument system calls to convey information about the power state transitions of

these components. Both the Cignetti and Li models are simple and highly effective for their

target systems; however, their generality is limited. In the case of the Cignetti model for the

Palm, it is unlikely that accurate power models for larger systems can be generated based

solely on component power states. The Li model, on the other hand, relies on previous

profiling of the routines being run.

Server Models

High-level power models have proven useful to enable energy-efficiency optimizations

in server environments. Fan et al. showed that, over a large group of homogeneous

servers, full-system models based on OS-reported CPU utilization alone proved highly

accurate [18]. They investigated two types of models: one was linear in CPU utilization,

and the other was an empirical model of the form P = C0 + C1 × u + C2 × ur, where C0, C1,

C2, and r are experimentally determined model parameters and u is the CPU utilization.

Ranganathan et al. implemented similar dynamic power budgeting optimizations at

the blade-enclosure level [56]. They created lookup tables correlating system resource

utilization to performance and power and a methodology for porting a model generated on

one machine to another in the same family by examining the different relationships between

performance and resource utilization [55].

Heath et al. used a similar approach to full-system power modeling in order to enable

energy-aware server consolidation in clusters [27]. Using OS-reported CPU, memory, and

disk utilization, they developed linear models for two different types of servers that were

sufficiently accurate to enable energy savings.

Finally, we used both OS-reported component utilizations and CPU performance coun-

ters to model a blade and a 4-way Itanium 2 server [14]. Using the same inputs for both

systems, we generated linear models that typically yielded errors of less than 10%. Given

CHAPTER 5. POWER MODELING BACKGROUND 75

the disparities in power footprint, component balance, and component architectures be-

tween the two systems, this result is strong evidence for the generality of this approach;

however, the trade-offs between simplicity and accuracy were not examined.

All of these models are fast, simple, non-intrusive full-system models. However, most

of them were developed with reference to a single system or family of systems, and without

concern for their generality or for understanding the trade-offs between model simplicity

and accuracy. The next two chapters seek to study these questions.

Chapter 6

The Mantis Power Modeling

Methodology

76

CHAPTER 6. THE MANTIS POWER MODELING METHODOLOGY 77

This chapter explains the Mantis methodology for generating high-level power models.

Section 6.1 gives an overview of the process of formulating and applying power models,

including the physical instrumentation setup. Section 6.2 details the calibration process,

while Sections 6.3 and 6.4 explain the choices of model inputs and the types of models

currently generated by Mantis. Section 6.5 explains the infrastructure used to evaluate the

accuracy and generality of the models; the results of this evaluation will be presented in

Chapter 7.

6.1 Overview of Model Development and Evaluation

Figure 6.1 illustrates the process of developing and applying Mantis models. The first

stage is running the calibration suite on a system connected to an AC power meter, while

collecting system utilization metrics. This calibration suite, described in more detail in

Section 6.2, consists of benchmarks that individually stress each major component of the

system under test in order to derive the correlation between component utilization and

overall power consumption. The outcome of this first stage is a vector of utilization metrics

for each sampling interval (a one-second interval is used throughout this work), correlated

to an AC power measurement for that interval.

The second stage of the process is to formulate the model based on the performance

metrics and AC power data acquired during the calibration. Section 6.4 describes the mod-

els we fit in more detail. The result of model generation is an equation or set of equations

that relates the metrics collected to the full-system power. No information about the sys-

tem other than the data collected by the calibration process is used to generate the models.

Steps 1 and 2 need to be done exactly once for a specific system configuration, ideally by

its vendor; precedent exists for this type of vendor-supplied power measurement [2].

End users of Mantis will proceed to the third stage, power prediction. In this stage,

a low-overhead dæmon collects the utilization metrics and predicts power based on the

CHAPTER 6. THE MANTIS POWER MODELING METHODOLOGY 78

Figure 6.1: Overview of Mantis model generation and use.

models developed in the second stage, without the need for an AC power meter. However,

to evaluate the models’ accuracy in Chapter 7, we both measure AC power and use the

models to predict power; we compute the models’ accuracy by comparing the predicted

power to the actual measured power for each sampling interval.

Figure 6.2 shows the measurement infrastructure for the calibration stage. The system

under test is plugged into a power meter, in this case the Brand Electronics 20-1850CI,

which in turn plugs into the wall. The power meter measures the AC power of the system

under test. Another computer, the control and measurement system, reads the AC power

measurements from the meter via serial cable and initiates the calibration suite and the

metric-collecting dæmon via Ethernet connection with the system under test. To generate

models, the timestamped metrics are correlated with the timestamped power measurements.

CHAPTER 6. THE MANTIS POWER MODELING METHODOLOGY 79

`

Control and
Measurement

System

System Under
Test

AC Power Meter

Wall (AC) Power

Figure 6.2: Mantis instrumentation setup.

Occasionally, samples will be dropped due to drift in the timing routines of the metric-

collecting dæmon or the power meter interface; in this case, the missing value is replaced

by a linear interpolation of the preceding and succeeding samples.

6.2 Calibration Process

The goal of the calibration process is to generate a data set that captures the relationship

between high-level software metrics and full-system AC power. This goal is achieved by

collecting software metrics and AC power measurements while running a suite of programs

that exercises each of the core components at varying levels of utilization, from idle to peak.

This section describes the calibration suite used to generate this data, including a discussion

of its portability and its limitations.

CHAPTER 6. THE MANTIS POWER MODELING METHODOLOGY 80

6.2.1 Calibration Software Suite

The calibration software suite has four different components: a brief “baseline” test to

establish the idle power, a CPU test, a memory test, and a disk test; similar tests could

be developed for other components if needed. The memory and disk tests use the gamut

software written by Justin Moore [46]. To stress the memory system, gamut creates worker

threads that allocate chunks of memory and write random values to each page. Gamut

allows the user to specify varying working set sizes, access rates, and ratios of sequential

to random accesses. The Mantis memory calibration workload consists of successive 55-

second runs for all combinations of two workload sizes (a maximal amount of memory

and half of that number), sequential versus random access patterns, and a variety of access

rates.

To stress the disk subsystem, gamut creates worker threads, each of which performs

reads and writes to a file. Gamut allows the user to specify the file location, the file size,

the size of each access, the I/O rate, and the mix of read, write, and seek commands.

The Mantis calibration suite varies the I/O rate and the read/write mix. For systems with

multiple disks, the suite is run multiple times; the first run exercises one disk, and each run

adds an additional disk to the workload.

To stress the CPU(s), we wrote a program that performs integer or floating-point matrix

multiplication on user-specified matrix sizes at user-specified levels of utilization; the idea

is to exercise each level of the on-chip memory hierarchy as well as the functional units.

This program uses a similar approach to gamut’s CPU tests: it defines an “epoch” as one

twenty-fifth of a second, and runs an initial test to determine the maximum number of inner

loop iterations per epoch in order to scale the utilization. The Mantis calibration suite runs

this program at five different utilization points for varying matrix sizes and both integer and

floating-point data types. For systems with multiple processors, the suite is run multiple

CHAPTER 6. THE MANTIS POWER MODELING METHODOLOGY 81

times, each time on an increasing number of processors (i.e. first with one processor with

varying utilization points, matrix sizes, and data types, then with two, and so on).

In this study, no program was used to selectively stress the network subsystem. Our ini-

tial research [14] showed that high-level network utilization data did not affect the power

models generated; the network terms simply dropped out of the models. Power manage-

ment is not yet widely employed in the network subsystem, either in the form of sleep states

or in the form of scaling power down in response to low utilization [47]. At the time of this

work, network subsystems thus do not have high enough dynamic power variation to add

any useful information to full-system power models.

6.2.2 Portability and Limitations

In order for Mantis to be portable, the calibration suite must be portable as well. Currently,

the suite requires some manual tuning, beyond simply specifying system properties, to be

sure that resources are adequately utilized. For the CPU test, the matrix sizes and number

of iterations must be checked to ensure that they remain in cache and that the test takes a

reasonable amount of time. The memory and disk tests also require some experimentation

to discover the access rates that saturate these components. Most of this parameter space

exploration could potentially be automated in future versions of the software.

Beyond portability concerns, the calibration suite has some other caveats and limita-

tions. First, the approach of stressing each component independently runs the risk of not

capturing correlations between components. The models studied in this work assume that

the components can be approximated as linearly independent; for more complicated mod-

els, the calibration suite may need to be re-evaluated.

Second, the calibration suite may not be able to fully stress all components for sev-

eral reasons. Since it runs on top of the operating system, it has imperfect control of the

CHAPTER 6. THE MANTIS POWER MODELING METHODOLOGY 82

hardware, which is an issue for the memory and disk tests in particular. In addition, pro-

gram overheads may prevent it from maximizing the bandwidth to a subsystem. Finally,

maximally stressing a particular unit may require architecture-specific knowledge; in the

case of a CPU, for example, knowledge of the hardware functional units and the amount of

parallelism available would help to ensure the maximum dissipation of power.

Finally, the calibration suite attempts to stress each component in isolation, which

means that if we assume that the CPU, memory, and disk tests take equal amounts of time,

each component will be idle for two-thirds of the duration of the calibration suite. Be-

cause the model generation process attempts to minimize error over all data points without

correcting for this bias, models may be biased toward the low-utilization case.

6.3 Model Inputs

Full-system power consumption can be divided into two components: the static or idle

power, which is independent of system activity, and the dynamic power, which varies with

utilization. The static power is easily obtained by measuring the system’s power consump-

tion when it is idle. Utilization metrics, however, are necessary to understand the dynamic

power. The utilization metrics used as model inputs should therefore be those that best

correlate to the dynamic power consumption of the overall system. This section describes

in detail the utilization metrics used in the prior modeling work described in Section 5.2,

including their relationship to dynamic power and how they can be collected. Section 6.4

will describe the specific models evaluated in this work.

OS-reported CPU utilization is often used as a first-order proxy for dynamic power, as

in the models by Fan et al. [18]. The reason is that the CPU has historically dominated

systems’ dynamic power. OS-reported CPU utilization corresponds to the percentage of

cycles in which the CPU is not in the idle state. This statistic captures the dynamic power

CHAPTER 6. THE MANTIS POWER MODELING METHODOLOGY 83

variation brought about when CPUs transition to a low-power mode when idle. Its weak-

ness, however, is that it does not capture how fully the CPU is utilized: the CPU counts

as non-idle as long as any of its pipeline stages or functional units are active. CPU utiliza-

tion is an easily available statistic on most platforms, via tools such as sar from the Linux

sysstat package.

The dynamic power of hard disks can be approximated to a first order by the disk

power state and secondarily by the balance between seeking and transferring data [25].

Programs like Linux’s iostat provide information about the disk utilization (which is

defined analogously to CPU utilization), the number of read and write accesses, the number

of blocks or sectors read and written, and the occupancy of the disk queues. Disk utilization

provides the first-order information about whether the disk is active or idle, without the

caveats of the CPU utilization metric since disks lack CPUs’ parallelism. The number of

accesses combined with the number of blocks or sectors written provides some information

about the balance between random and sequential I/O activity.

Network utilization can also be captured by sar. However, our preliminary work found

very little correspondence between network utilization and dynamic power, as explained in

Section 6.2.

Finally, a wealth of information about the behavior of the CPU and memory can be ob-

tained from the processor’s hardware performance counters, as described in Section 5.2.2.

Monitoring performance counters usually requires modifying the operating system; on

Linux, it requires recompiling the kernel. A number of interfaces to the performance

counters exist; we use the perfmon2 suite in this work, because it provides a high-level

interface to system-wide performance counter sampling and because it has been ported to

a wide range of processor families [53]. Performance counters that are found on many

systems and that capture significant dynamic power variation (see Section 5.2) are those

corresponding to the memory bandwidth, the amount of instruction-level parallelism, the

activity of the cache hierarchy, and the utilization of the floating-point unit. Section 7.6

CHAPTER 6. THE MANTIS POWER MODELING METHODOLOGY 84

discusses some subtle variations in the definitions of these performance counters from plat-

form to platform.

6.4 Models Studied

We examine five different types of models, which vary in the inputs used and the complexity

of the model equation. This section describes these five models, which are evaluated for a

variety of machines and benchmarks in Chapter 7.

The first model simply uses a constant C0 as the predicted power, irrespective of uti-

lization. This C0 is obtained by measuring the average power consumption during the cali-

bration suite. Using a constant power model is valuable for two reasons. First, it provides

a baseline against which to evaluate the utilization-based models. Second, it represents

the practice of estimating power by looking at the manufacturer-specified or “nameplate”

power, although this model will probably be more accurate than the “nameplate” power

since it represents the average power during use rather than a conservative worst-case esti-

mate.

The next two models use only CPU utilization to predict power; these are the two mod-

els used by Fan et al. [18]. The first model, described by Equation 6.1, predicts power as a

linear function of the CPU utilization uCPU . The C0 term represents the power consumption

that is invariant with CPU utilization, and the C1 term represents the contribution of CPU

utilization to dynamic power. C0 and C1 are obtained by simple linear regression over the

timestamped CPU utilization and AC power measurements collected during the calibration

suite. The second model, described by Equation 6.1, adds empirical parameters C2 and r.

Ppred = C0 + C1 × uCPU (6.1)

Ppred = C0 + C1 × uCPU + C2 × uCPU
r (6.2)

CHAPTER 6. THE MANTIS POWER MODELING METHODOLOGY 85

The fourth model, similar to that proposed by Heath et al. [27], uses disk metrics from

iostat in addition to the CPU utilization. This model, of the form shown in Equation 6.3,

is linear in CPU and disk utilization (udisk), with coefficients C0, C1, and C2 derived from

simple linear regression over the calibration data.

Ppred = C0 + C1 × uCPU + C2 × udisk (6.3)

The final model uses performance counters in addition to OS-reported utilization data,

as we proposed in [14]. The exact performance counters used vary with the systems being

modeled, but the basic form of the model is shown in Equation 6.4, where the coefficient

Ci is derived for each performance counter pi sampled. For this family of models, we

use only as many performance counters as can be sampled at one time, in the interest of

low overhead and model simplicity; for most of the systems we study, four performance

counters can be sampled simultaneously.

Ppred = C0 + C1 × uCPU + C2 × udisk + Σ(Ci × pi) (6.4)

6.5 Evaluation Process

6.5.1 Introduction

To investigate the generality and portability of these models, and to understand when to

choose one type of model over another, we evaluate them on a variety of machines running

a variety of benchmarks. During these experiments, the machines are plugged into an AC

power meter, and both software utilization data and AC power measurements are collected

once per second. The power predicted by the models that were developed using the cali-

bration data is then compared to the AC power, and the percent error of each prediction is

noted. This section describes the machines and benchmarks used to evaluate the models.

CHAPTER 6. THE MANTIS POWER MODELING METHODOLOGY 86

Machine Description
Xeon server 8-core server with 32 GB FBDIMM
Itanium server Compute-optimized server with 4 Itanium 2 CPUs
CoolSort-13 The CoolSort machine described in Chapter 4, using all 13 disks
CoolSort-1 CoolSort with only 1 disk
Laptop Laptop with AMD Turion processor and 384 MB memory

Table 6.1: Summary of machines used to evaluate Mantis-generated models.

6.5.2 Machines

We tuned and evaluated the Mantis-generated models on a diverse group of machines,

which varied in several important characteristics. Their processors span three different pro-

cessor families (Core 2 Duo/quad-core Xeon, Itanium, and Turion) and two different manu-

facturers (Intel and AMD). Their memories include mobile memory, desktop/server DDR2

memory, and fully-buffered DIMM technology, while their disks include both mobile and

enterprise disks. At the full-system level, the machines vary in the balance of power among

their components and in the amount of variation in their dynamic power consumption. This

section describes these machines in detail.

Xeon Server

The first machine studied is an HP Proliant DL140 G3 server that was purchased in 2008,

whose components are summarized in Table 6.2. This machine has eight processor cores,

split across two quad-core Intel Xeon processors with clock frequencies of 2.3 GHz. Its

memory consists of eight 4 GB FBDIMMs, for a total of 32 GB of memory. Finally, it has

two 500 GB, 7200 rpm disks. This machine consumes approximately 220 W when idle and

up to 340 W when the processor and memory are highly utilized. This high dynamic range

is unusual for a server [5].

CHAPTER 6. THE MANTIS POWER MODELING METHODOLOGY 87

Component Qty Model Notes
CPU 2 Intel Xeon E5345 Quad-core Clk freq = 2.3 GHz
Memory 8 PC5300 FBDIMM 4 GB/dimm
Disk 2 500 GB, 7200 rpm

Table 6.2: Xeon server components.

Component Qty Model
CPU 4 Itanium 2 “Madison” 1.5 GHz
Memory 1GB DDR
Disk 1 36 GB SCSI

Table 6.3: Itanium server components.

Itanium Server

The other enterprise-class machine studied is a prototype of an HP Itanium server, whose

components are shown in Table 6.3. This prototype is heavily unbalanced in favor of the

CPU, with four Itanium 2 processors but only 1 GB of memory and one relatively low-

capacity hard disk. The dynamic range of this system is quite low, with power consumption

ranging between 630 and 680 W.

CoolSort

The CoolSort machine described in Section 4.3 was used in four different configurations:

with all 13 disks (CoolSort-13) at its highest and lowest frequencies, and with just one

disk (CoolSort-1) at its highest and lowest frequencies. The dynamic power of the 13-disk

configuration is dominated by the CPU and disks. In the 1-disk configuration, CPU and

memory dominate the overall power consumption. Table 6.4 summarizes these configura-

tions.

CHAPTER 6. THE MANTIS POWER MODELING METHODOLOGY 88

Component Qty Model Notes

CPU 1
Intel Core 2 Duo High freq = 2324 MHz
T7600 (mobile) Low freq = 996 MHz

Memory 2 1 GB DDR2 667 Desktop-class
Disk 1 or 13 160 GB, 5400 rpm Mobile (2.5”)
Disk controllers 2 Rocket RAID 2320/2300 CoolSort-13 only

Table 6.4: CoolSort components for modeling study.

Component Qty Model Notes

CPU 1
AMD Turion 64 High freq = 1800 MHz
ML-34 (mobile) Low freq = 800 MHz

Memory 384 MB DDR
Disk 1 60 GB, 5400 rpm Mobile (2.5”)

Table 6.5: Laptop components.

Laptop

The final machine is a 2005-era laptop, the HP Special Edition L2000, whose components

are summarized in Table 6.5. Its processor is an AMD Turion 64; models were developed

for the highest and lowest processor frequencies. It has 384 MB of DDR memory, and one

60 GB disk. Its dynamic range, the highest of any of the systems studied, extends from a

minimum of 14 W at its lowest frequency to a maximum of 42 W at its highest frequency.

Its battery was removed and the display closed for this study.

The five machine configurations studied span a wide range of components and system

balances, which makes them a useful collection for testing the generality and portability

of the different models. Table 6.6 summarizes their component classes, processor families,

component balances, and power footprints and ranges.

CHAPTER 6. THE MANTIS POWER MODELING METHODOLOGY 89

Machine Class Processor Dominant Dynamic
component(s) range

Xeon server Enterprise 4-core Intel Xeon CPU, memory 220–340 W
Itanium server Enterprise Itanium 2 CPU 630–680 W
CoolSort-13

Hybrid
Mobile Intel CPU, disk 58–108 W

CoolSort-1 Core 2 Duo CPU, memory 45–85 W
Laptop Mobile AMD Turion CPU 14–42 W

Table 6.6: Selected properties of Mantis evaluation machines.

Name Description
SPECint SPEC CPU2006 integer benchmarks
SPECfp SPEC CPU2006 floating-point benchmarks
SPECjbb SPECjbb2005 server-side Java benchmark
stream The STREAM memory stress benchmark
clamAV Antivirus scanner
Nsort Sorting program
SPECweb SPECweb2005 webserver benchmark

Table 6.7: Descriptions of benchmarks selected to evaluate Mantis models.

6.5.3 Benchmarks

To evaluate the predictions of the Mantis-generated models, we chose a set of benchmarks

that exercise various combinations of a system’s core components. Because the calibration

suite was biased toward the low-utilization case, the typically high component utilizations

of these benchmarks present a worst-case challenge for the models. Table 6.7 lists the

benchmarks used.

SPEC CPU Benchmarks

The benchmarks comprised by the integer and floating-point SPEC CPU suites all stress the

processor(s), but differ in the amounts of instruction-level parallelism present, the stress to

the memory hierarchy, and in their memory access patterns [78]. Using these benchmarks

CHAPTER 6. THE MANTIS POWER MODELING METHODOLOGY 90

will help to determine the benefit, if any, of performance-counter-based processor informa-

tion over CPU utilization alone. The SPEC CPU2006 suite [64] was used for all machines

except the Itanium; at the time of that work, the SPEC CPU2006 suite had not yet been

released, and so the SPEC CPU2000 benchmarks [63] were used instead. The two suites

are not identical in their characteristics, but they serve the same purpose in this study.

SPEC JBB Benchmark

The SPEC JBB benchmark emulates a server-side Java workload, focusing on the appli-

cation tier. It stresses both the processor(s) and the memory hierarchy, with little or no

I/O. The benchmark duration consists of several short runs, with the number of threads in-

creasing in each run. The SPECjbb2005 benchmark [66] was used for all machines except

the Itanium; at the time of that work, SPECjbb2000 [65] had not yet been deprecated, and

so that was used instead. The changes between the two versions mostly concern the Java

implementation [67] and not the underlying hardware utilization.

STREAM

The STREAM benchmark is a synthetic memory benchmark that attempts to maximize

memory bandwidth [43]. Thus, it heavily stresses the memory without exerting commen-

surate pressure on the CPU. As with the preceding benchmarks, STREAM has very little

I/O activity.

I/O Benchmarks

Three benchmarks were used to stress the I/O subsystem. On most machines, the Clam

antivirus scanner [11] was used, with multiple copies instantiated if necessary to exercise

multiple disks. On these machines, the Clam program utilized CPU, memory, and disk.

Two of the machines necessitated using different programs to stress the I/O system. On

CHAPTER 6. THE MANTIS POWER MODELING METHODOLOGY 91

Name Component utilization
CPU Memory Disk

SPECint Very high High Very low
SPECfp Very high High Very low
SPECjbb Very high Very high Very low
stream Medium Very high Very low
clamAV Medium Medium-low Medium-high
Nsort High Medium Very high
SPECweb Medium-low Low Medium

Table 6.8: Component utilizations of Mantis evaluation benchmarks.

CoolSort-13, Clam was CPU-bound and barely utilized the disk subsystem; therefore, the

Nsort program [48] was substituted. As described in Section 4.3, CPU and I/O utilization

are both maximized during the first pass of the sort, with CPU utilization dropping in the

second pass due to the bottleneck created by the increased amount of random I/O. On the

Itanium server, on the other hand, SPECweb2005 [69] was used to provide a combination

of disk and network I/O.

Table 6.8 presents the typical component utilizations of these benchmarks. An unusually

configured machine may have bottlenecks that result in different utilization characteristics,

as with ClamAV on CoolSort-13. In general, however, these benchmarks stress different

combinations of components to varying degrees, providing a spectrum of test cases for the

Mantis models. Chapter 7 presents the results of these tests.

Chapter 7

Power Modeling Evaluation

92

CHAPTER 7. POWER MODELING EVALUATION 93

This chapter evaluates the Mantis-generated models on a variety of systems and bench-

marks, as discussed in Chapter 6. Section 7.1 draws the high-level overall conclusions of

this evaluation, while Sections 7.2 through 7.6 present the detailed evaluation results on

each machine. Section 7.7 summarizes and concludes this chapter.

7.1 Overall Results

Figures 7.1 and 7.2 show the mean and 90th percentile errors, respectively, for each model

and benchmark across all of the machine configurations tested. Each cluster of columns

represents one of the benchmarks described in Section 6.5.3, except for the leftmost clus-

ter, which represents the calibration suite used to fit the models. Within each cluster, the

leftmost bar shows the error from the constant power model defined in Section 6.4, and

the next two bars represent the two CPU-utilization-based models defined by Equations 6.1

and 6.2, respectively. The fourth bar from the left is the model defined by Equation 6.3,

which is based on the CPU and disk utilizations. Finally, the rightmost bar shows the error

from the model defined by Equation 6.4, which includes performance counters as well as

the CPU and disk utilizations.

These graphs support some high-level observations. First, all of the utilization-based

models clearly outperform the constant model, showing that hardware resource utilizations

do correlate to power consumption. In addition, the performance-counter-based model,

which uses the most information, is overall the best model for every benchmark, with

the lowest mean and 90th percentile absolute errors across the board. Finally, all of the

utilization-based models predict power within 10% accuracy (mean) and 12% accuracy

(90th percentile) for each benchmark, averaged over all configurations. These results sug-

gest that even the simple, linear CPU-utilization-based model would meet the accuracy

goal outlined in Section 5.1. The rest of this section examines the situations in which the

more detailed models are most helpful.

CHAPTER 7. POWER MODELING EVALUATION 94

0

2

4

6

8

10

12

14

16

Calib SPECfp SPECint SPECjbb stream I/O

M
ea

n
 %

 E
rr

or

Const
CPUut-Lin
CPUut-Emp
CPU+Disk
Perfctr

Figure 7.1: Overall mean absolute error for Mantis-generated models over all benchmarks
and machine configurations.

CHAPTER 7. POWER MODELING EVALUATION 95

0

2

4

6

8

10

12

14

16

18

Calib SPECfp SPECint SPECjbb stream I/O

9
0

th
 P

er
ce

n
ti

le
 %

 E
rr

or

Const
CPUut-Lin
CPUut-Emp
CPU+Disk
Perfctr

Figure 7.2: Overall 90th percentile absolute error for Mantis-generated models over all
benchmarks and machine configurations.

CHAPTER 7. POWER MODELING EVALUATION 96

0

5

10

15

20

25

SPECfp SPECint SPECjbb

Xeon server

M
ea

n
 %

 E
rr

or

Const
CPUut-Lin
CPUut-Emp
CPU+Disk
Perfctr

Figure 7.3: Best case for the empirical CPU-utilization-based model: CPU-intensive
benchmarks on Xeon server.

Figure 7.3 shows the mean absolute percentage error for the benchmarks that make the

strongest case for the empirical CPU-utilization-based model. These benchmarks are the

CPU-intensive SPECint, SPECfp, and SPECjbb benchmarks running on the Xeon server.

For each of these benchmarks, the empirical CPU-utilization-based model far outperforms

the other models, and only this model and the performance-counter-based model meet the

goal of 10% absolute error or less.

Figure 7.4 shows the power predicted by this model for different values of CPU uti-

lization, while Figure 7.5 shows the actual power during the calibration suite. The curve

CHAPTER 7. POWER MODELING EVALUATION 97

0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700 800
CPU Utilization % (8 cores)

P
re

d
ic

te
d

 P
ow

er
 (

W
)

Figure 7.4: Power predicted by the empirical CPU-utilization-based model versus CPU
utilization for the Xeon server.

is close to linear for CPU utilizations between 0 and 500% (note that the maximum CPU

utilization is 800%, since this machine has 8 cores). The curve then levels off at higher uti-

lizations, which is much closer to the actual behavior of the server than a linear model. This

effect may be attributable to the shared resources on the quad-core Xeon chips used in this

server; for example, the maximum number of references to the shared L2 cache increases

very slowly at high utilization, since this resource can be fully utilized even when not all

of the cores are active. This empirical model was originally proposed in the context of

multicore servers [18], so it may capture a fundamental behavior in server-class multicores

with shared on-chip resources.

CHAPTER 7. POWER MODELING EVALUATION 98

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600 700 800
CPU Utilization % (8 cores)

M
ea

su
re

d
 P

ow
er

 (
W

)

Figure 7.5: Measured power versus CPU utilization for the Xeon server during the calibra-
tion suite. Note that memory and disk utilization also varied over this data.

CHAPTER 7. POWER MODELING EVALUATION 99

Figure 7.6 shows the mean absolute percentage error for the benchmarks that make

the strongest case for the model based on CPU and disk utilizations. These benchmarks

are the Nsort benchmark and the three CPU-intensive benchmarks, run on CoolSort-13 at

its highest frequency. Since Nsort is the most disk-intensive benchmark, disk utilization

information unsurprisingly improves the power predictions. For the three CPU-intensive

benchmarks, the usefulness of disk utilization information is more surprising, since none

of these benchmarks have significant disk utilization. The reason that the disk information

is helpful is that both the CPU and the disks contribute significantly to the peak dynamic

power of this system, and these two utilizations are not highly correlated. Forcing the

CPU utilization to explain the entire dynamic power variation of the system results in over-

predicting dynamic power when disk utilization is low, particularly for the less flexible

linear model.

Figure 7.7 plots the power predictions of these three models for varying values of CPU

utilization, holding the disk utilization constant at zero. Comparing the predictions at 200%

utilization, the linear model predicts the maximum dynamic power, which is achievable

only with high disk utilization. Both the CPU empirical model and the model that includes

disk utilization predict a lower power consumption that is much closer to the actual dynamic

contribution of the CPU. SPECjbb runs near 200% utilization, and Figure 7.6 accordingly

shows that the linear CPU model yields by far the worst prediction for this benchmark,

while the empirical CPU model and the disk model predict power much more accurately.

At the 100% utilization point, Figure 7.7 shows that the two CPU-utilization-based

models are roughly equivalent and still overpredict power compared to the more accurate

model that uses disk utilization. On this machine, the SPECcpu suite was run on just

one core, corresponding to 100% utilization. As Figure 7.6 shows, the two utilization-

based models predict similar power consumption for the two SPECcpu benchmarks, and

CHAPTER 7. POWER MODELING EVALUATION 100

0

5

10

15

20

25

Nsort SPECfp SPECint SPECjbb

CoolSort-13-hi

M
ea

n
 %

 E
rr

or

Const
CPUut-Lin
CPUut-Emp
CPU+Disk
Perfctr

Figure 7.6: Best case for the CPU- and disk-utilization-based model: Selected benchmarks
on CoolSort-13 at the highest frequency.

overpredict compared to the model that includes disk utilization. The example of CoolSort-

13 shows that disk utilization information is useful on systems with high peak dynamic disk

power consumption, even on workloads with very low disk utilization.

Figure 7.8 shows the best case for the performance-counter-based power model. The

leftmost cluster of columns shows the mean absolute percentage error for the stream bench-

mark on the Xeon server, which has 32 GB of FBDIMM memory. Stream is a memory-

intensive but not particularly CPU-intensive benchmark, and so the high dynamic power

CHAPTER 7. POWER MODELING EVALUATION 101

0

20

40

60

80

100

120

0 50 100 150 200

CPU Utilization % (2 cores)

P
re

d
ic

te
d

 P
ow

er
 (

W
)

CPUut-Lin
CPUut-Emp
CPU+Disk

Figure 7.7: Power predicted by the CPU-utilization-based models and the CPU and disk-
utilization-based model versus CPU utilization on CoolSort-13 at its highest frequency.
Disk utilization is assumed to be 0.

CHAPTER 7. POWER MODELING EVALUATION 102

of this machine’s memory is only captured by metrics specifically based on memory uti-

lization. The only model that uses such a metric is the performance-counter-based model,

which includes the performance counter for memory bus transactions as a parameter. This

information results in a much more accurate power prediction.

The other three clusters of columns in Figure 7.8 show the mean absolute percent-

age errors for the models on the CPU-intensive benchmarks on CoolSort-13 at the highest

frequency; this is the same data shown in Figure 7.6 to illustrate the usefulness of disk

utilization. As Figure 7.8 shows, performance counter information further improves the

power predictions for these benchmarks. The reason is that the CPU uses aggressive clock

gating to shut down unused units, even at high utilization [31], so power depends not only

on whether the CPU is utilized, but upon how it is utilized. In particular, the SPECjbb

benchmark has much lower instruction-level parallelism than the SPECcpu benchmarks,

even though it runs on both cores and the SPECcpu benchmarks run on just one.

7.2 Xeon Server Power Models

This section evaluates the power models generated for the Xeon server whose specifications

were given in Section 6.5.2. These models are defined by Equations 7.1 through 7.5. All of

the model inputs are normalized to their maximum values seen during calibration; for the

performance counters, this may not be the maximum possible value. In general, however,

the normalized input values will be between 0 and 1. Therefore, each parameter’s coeffi-

cient in the linear models will be equivalent to that parameter’s maximum contribution to

the dynamic power of the system.

In these equations, uCPU and udisk correspond to the CPU and disk utilizations, respec-

tively. The performance counters sampled are unhalted clock cycles (pu), the number of

instructions retired (pi), the number of last-level cache references (pc), and the number

CHAPTER 7. POWER MODELING EVALUATION 103

0

2

4

6

8

10

12

14

16

18

20

Stream SPECfp SPECint SPECjbb

Xeon server CoolSort-13-hi

M
ea

n
 %

 E
rr

or

Const
CPUut-Lin
CPUut-Emp
CPU+Disk
Perfctr

Figure 7.8: Best case for the performance-counter-based model: Selected benchmarks on
the Xeon server and on CoolSort-13 at the highest frequency.

CHAPTER 7. POWER MODELING EVALUATION 104

of memory bus transactions (pm). Note that uCPU and pu should be equivalent; in prac-

tice, however, using both metrics generates more accurate models. For the performance

counter model, the combination of the uCPU and pu terms gives the CPU-utilization-based

contribution to the dynamic power consumption.

Constant model (Equation 7.1).

P = 239.80 (7.1)

Linear CPU-utilization-based model (Equation 7.2).

P = 222.99 + 137.88 ×
uCPU

max. uCPU
(7.2)

Empirical CPU-utilization-based model (Equation 7.3).

P = 221.08 + 161.71 ×
uCPU

max. uCPU
− 4.09E-3 ×

{
uCPU

max. uCPU

}4.55

(7.3)

Linear CPU- and disk-utilization-based model (Equation 7.4).

P = 222.94 + 137.96 ×
uCPU

max. uCPU
+ 1.96 ×

udisk

max. udisk
(7.4)

Performance-counter-based model (Equation 7.5).

P = 223.18 − 56.40 ×
uCPU

max. uCPU
+ 1.60 ×

udisk

max. udisk

+ 39.23 ×
Pm

max. Pm
+ 66.70 ×

Pi

max. Pi

+ 27.31 ×
Pc

max. Pc
+ 95.03 ×

Pu

max. Pu
(7.5)

Table 7.1 shows the results of the model generation stage. For linear models, the co-

efficient of determination (R2) is a measure of how much of the deviation from the mean

power consumption is captured by the model parameters. An R2 of 1 means that the model

parameters explain all of the variation in the system’s power consumption. “MSE” is the

CHAPTER 7. POWER MODELING EVALUATION 105

Model R2 MSE Mean Err. % 90th Pct. Err. %
Const n/a 585.96 6.93 14.05
CPUut-Lin 0.9343 38.49 1.65 3.77
CPUut-Emp n/a 22.07 1.32 2.98
CPU+Disk 0.9343 38.47 1.64 3.77
Perfctr 0.9481 30.40 1.34 3.47

Table 7.1: Model calibration results for the Xeon server.

models’ mean squared error over the calibration data. The remaining two columns list the

mean absolute percentage error and the 90th percentile absolute error for each model. Note

that for the calibration phase, adding more parameters to a model will never increase the

mean squared error; if a particular parameter does not improve the mean squared error, its

coefficient will be 0 and it will be effectively dropped from the model.

Figures 7.9 and 7.10 show the mean and 90th percentile absolute errors, respectively,

for the Mantis-generated models on the Xeon server. The errors are low for the calibra-

tion suite, which is biased toward the idle case, and for ClamAV. As the coefficient for

disk utilization in Equation 7.4 shows, the disk consumes a very small percentage of the

dynamic power consumption, and so the disk-intensive ClamAV benchmark does not have

high dynamic power consumption either. The stream benchmark results, which were dis-

cussed in Section 7.1, show the necessity of the memory performance counter for memory-

intensive benchmarks on a system with high dynamic memory power. The results of the

CPU-intensive SPEC benchmarks, which were also discussed in Section 7.1, show the use-

fulness of the empirical CPU-utilization-based model for multicore processors with shared

resources.

CHAPTER 7. POWER MODELING EVALUATION 106

0

5

10

15

20

25

calib SPECfp SPECint SPECjbb stream clamAV

M
ea

n
 %

 E
rr

or

Const
CPUut-Lin
CPUut-Emp
CPU+Disk
Perfctr

Figure 7.9: Mean absolute percentage error of the Mantis-generated models on the Xeon
server.

CHAPTER 7. POWER MODELING EVALUATION 107

0

5

10

15

20

25

30

calib SPECfp SPECint SPECjbb stream clamAV

9
0

th
 P

er
ce

n
ti

le
 %

 E
rr

or

Const
CPUut-Lin
CPUut-Emp
CPU+Disk
Perfctr

Figure 7.10: 90th percentile absolute percentage error of the Mantis-generated models on
the Xeon server.

CHAPTER 7. POWER MODELING EVALUATION 108

7.3 Itanium Server Power Models

This section evaluates the power models generated for the Itanium server whose specifica-

tions were given in Section 6.5.2. These models are defined by Equations 7.6 through 7.10.

In these equations, uCPU corresponds to the CPU utilization. The performance counters

sampled are L2 cache misses (pl2m), the amount of instruction-level parallelism (pilp), and

the number of floating-point instructions executed (p f). The Itanium server’s management

processor allows the fan speed to be read; this section therefore includes an additional

model that adds the fan speed (fan) to the performance-counter model. For this server, disk

utilization information did not contribute to the quality of the models, so the “CPU+disk”

model is not present, and the performance counter models do not include disk utilization

information.

Constant model (Equation 7.6).

P = 654.41 (7.6)

Linear CPU-utilization-based model (Equation 7.7).

P = 643.56 + 36.80 ×
uCPU

max. uCPU
(7.7)

Empirical CPU-utilization-based model (Equation 7.8).

P = 641.11 + 688.45 ×
uCPU

max. uCPU
− 627.68 ×

{
uCPU

max. uCPU

}1.04

(7.8)

Performance-counter-based model (Equation 7.9).

P = 622.88 + 25.49 ×
uCPU

max. uCPU
− 4.12 ×

P f

max. P f

+ 15.63 ×
Pl2m

max. Pl2m
+ 31.39 ×

Pilp

max. Pilp
(7.9)

CHAPTER 7. POWER MODELING EVALUATION 109

Model R2 MSE Mean Err. % 90th Pct. Err. %
Const n/a 130.84 1.65 2.18
CPUut-Lin 0.7746 29.49 0.63 1.55
CPUut-Emp n/a 19.51 0.48 1.07
Perfctr 0.8415 20.71 0.49 1.29
Perfctr+Fans 0.8417 20.69 0.49 1.29

Table 7.2: Model calibration results for the Itanium server.

Performance-counter-based model plus fan speed (Equation 7.10).

P = 639.37 + 25.43 ×
uCPU

max. uCPU
− 4.12 ×

P f

max. P f

+ 15.65 ×
Pl2m

max. Pl2m
+ 31.53 ×

Pilp

max. Pilp

− 16.67 ×
fan

max. fan
(7.10)

Table 7.2 shows the results of the model calibration phase on the Itanium server. The R2

values for these models are lower than those for the Xeon server models, indicating that a

higher percentage of this system’s dynamic power is unexplained by the models. Since the

dynamic power on the Itanium is much lower than on the Xeon server, R2 can be affected by

a variation of even a few Watts in some unmodeled component, such as the power supply.

Figures 7.11 and 7.12 present the mean and 90th percentile absolute percentage errors,

respectively, for each model over the execution of each benchmark. Note that the “Per-

fctr+Fans” percentage error was always within 0.02 of the “Perfctr” percentage error, so it

is not shown in these graphs. The dynamic power of the fans is difficult to determine, but

the variation in fan speed over the duration of the benchmarks was low, which may explain

this result.

CHAPTER 7. POWER MODELING EVALUATION 110

Since the dynamic power of this system is so low, all of the models yield much more

accurate predictions than the models for the Xeon server did. The performance-counter-

based model is the most accurate overall, with mean errors of less than 2% for all bench-

marks. The largest disparity between different models occurs for the SPECjbb bench-

mark. SPECjbb, as it did on the Xeon server, has high CPU utilization but relatively low

instruction-level parallelism. Furthermore, this particular server was a prototype whose

operating system did not correctly call the halt instruction when a CPU was idle, which

meant that CPUs did not enter a low-power state when idle. This bug contributed to the

low dynamic power of the system. It also means that CPU utilization is a much less useful

proxy for power, since it does not reflect the percentage of time spent in a low-power state.

As with the Xeon server, how the CPU is utilized becomes important, and the models based

on utilization percentage alone fare poorly on a benchmark that combines high utilization

with low instruction-level parallelism.

Figure 7.11 shows that the constant model actually has the best overall 90th percentile

error; when the dynamic range is low, predicting a power consumption in the middle of the

range will be a consistently safe bet. For the SPECfp, SPECint, and SPECjbb benchmarks,

all of the other models overpredict when the CPU utilization is at its highest point. As with

the Xeon server, shared resource bottlenecks prevent the amount of parallelism from scaling

with utilization. In this system, the bottleneck is the small amount of memory, which

prevents the CPUs from being fully utilized by the SPECcpu and SPECjbb benchmarks.

In conclusion, the constant model easily suffices for the Itanium system, with its low

dynamic power. However, this system presents a unique platform for understanding the

trade-offs of the utilization-based models, and shares some qualitative similarities with the

seemingly vastly different Xeon server. The results on both systems suggest that CPU uti-

lization has some limitations as a proxy for power, and that bottlenecks on shared resources

can create a non-linear relationship between utilization and power consumption.

CHAPTER 7. POWER MODELING EVALUATION 111

0

0.5

1

1.5

2

2.5

3

3.5

calib SPECfp SPECint SPECjbb stream SPECweb

M
ea

n
 %

 E
rr

or

Const
CPUut-Lin
CPUut-Emp
Perfctr

Figure 7.11: Mean absolute percentage error of the Mantis-generated models on the Ita-
nium server.

CHAPTER 7. POWER MODELING EVALUATION 112

0

1

2

3

4

5

6

7

calib SPECfp SPECint SPECjbb stream SPECweb

9
0

th
 P

er
ce

n
ti

le
 %

 E
rr

or

Const
CPUut-Lin
CPUut-Emp
Perfctr

Figure 7.12: 90th percentile absolute percentage error of the Mantis-generated models on
the Itanium server.

CHAPTER 7. POWER MODELING EVALUATION 113

7.4 CoolSort-13 Power Models

This section evaluates the power models generated for the CoolSort 13-disk configuration

(see Section 6.5.2) at its highest processor clock frequency of 2,324 MHz and its lowest

frequency of 996 MHz.

7.4.1 CoolSort-13, Highest Clock Frequency

Equations 7.11 through 7.15 define the models for CoolSort-13 at the highest clock fre-

quency. Refer to Section 7.2 for a discussion of the model inputs used; these models use

the same performance counters as the models for the Xeon server.

Constant model (Equation 7.11).

P = 75.20 (7.11)

Linear CPU-utilization-based model (Equation 7.12).

P = 68.91 + 37.33 ×
uCPU

max. uCPU
(7.12)

Empirical CPU-utilization-based model (Equation 7.13).

P = 67.12 − 2450 ×
uCPU

max. uCPU
+ 2490 ×

{
uCPU

max. uCPU

}0.99

(7.13)

Linear CPU- and disk-utilization-based model (Equation 7.14).

P = 67.86 + 26.55 ×
uCPU

max. uCPU
+ 18.34 ×

udisk

max. udisk
(7.14)

Performance-counter-based model (Equation 7.15).

P = 67.74 + 13.97 ×
uCPU

max. uCPU
+ 20.77 ×

udisk

max. udisk

+ 6.20 ×
Pm

max. Pm
+ 3.33 ×

Pi

max. Pi

+ 4.26 ×
Pc

max. Pc
+ 6.04 ×

Pu

max. Pu
(7.15)

CHAPTER 7. POWER MODELING EVALUATION 114

Model R2 MSE Mean Err. % 90th Pct. Err. %
Const n/a 108.61 11.98 18.52
CPUut-Lin 0.5375 50.23 7.43 13.95
CPUut-Emp n/a 46.45 6.96 12.92
CPU+Disk 0.7210 30.29 5.12 10.57
Perfctr 0.7268 29.65 4.99 10.65

Table 7.3: Model calibration results for CoolSort-13 at its highest frequency.

Table 7.3 shows the results of the model generation on CoolSort-13. For this configu-

ration, the linear CPU utilization model has an R2 value of just 0.5375, indicating that just

over half of the dynamic power variation is correlated with CPU utilization. Adding disk

utilization produces much more accurate models, with R2 values above 0.72. The model

coefficients in Equation 7.14 attribute a dynamic power of 26.55 W to the CPU utiliza-

tion and 18.34 W to the disk utilization. Since CPU and disk utilization are not highly

correlated, both of these quantities are necessary to produce accurate models.

Figures 7.13 and 7.14 show the mean and 90th percentile percentage errors, respectively,

for these models on each benchmark. The performance-counter-based model is the most

accurate model across the board for this system configuration. The results for NSort and the

SPEC benchmarks were discussed in Section 7.1, leaving the stream benchmark. For this

benchmark, the CPU-utilization-based models and the performance-counter-based model

all predict power with comparable accuracy, while the CPU- and disk-utilization-based

model is much less accurate. The reason for its poor performance relative to the models

based on CPU utilization alone is related to the reason that those CPU-utilization-based

models predict SPECjbb’s power so poorly: forced to attribute the entire range of dynamic

power variation to the CPU, the CPU-utilization-based models tend to overpredict power

consumption for a given CPU utilization. The stream benchmark, however, stresses the

memory system, which is not directly captured by CPU or disk utilization. The model

based on CPU and disk utilization does accurately predict CPU and disk power, but does

CHAPTER 7. POWER MODELING EVALUATION 115

0

5

10

15

20

25

calib SPECfp SPECint SPECjbb stream Nsort

M
ea

n
 %

 E
rr

or

Const
CPUut-Lin
CPUut-Emp
CPU+Disk
Perfctr

Figure 7.13: Mean absolute percentage error of the Mantis-generated models on CoolSort-
13 at its highest frequency.

not predict the increase in memory power, resulting in an underprediction of the overall

system power. The models based on CPU utilization alone overpredict CPU power, but

this overprediction in CPU power makes up for the lack of information about the increased

memory power, for a more accurate full-system prediction.

Overall, these results show the inaccuracies of forcing CPU utilization (or, in the case

of stream, CPU and disk utilization) to explain the entire dynamic power variation in a

balanced system. As discussed in Section 7.1, they also show the usefulness of detailed

performance counter information for an aggressively power-optimized CPU.

CHAPTER 7. POWER MODELING EVALUATION 116

0

5

10

15

20

25

30

calib SPECfp SPECint SPECjbb stream Nsort

9
0

th
 P

er
ce

n
ti

le
 %

 E
rr

or

Const
CPUut-Lin
CPUut-Emp
CPU+Disk
Perfctr

Figure 7.14: 90th percentile absolute percentage error of the Mantis-generated models on
CoolSort-13 at its highest frequency.

CHAPTER 7. POWER MODELING EVALUATION 117

7.4.2 CoolSort-13, Lowest Clock Frequency

Equations 7.16 through 7.20 define the models for CoolSort-13 at its lowest clock fre-

quency, 996 MHz. Refer to Section 7.2 for a discussion of the model inputs used. This

configuration has perhaps the most unusual component balance seen in this study: with the

CPU at its lowest frequency, its dynamic power is dwarfed by the disk’s dynamic power

and is lower than the memory’s dynamic power. For this reason, the performance counter

model uses only the cache and memory performance counters to represent CPU and mem-

ory power. Because interfaces for obtaining hardware information from the memory and

disk are not at the level of detail of CPU performance counters, the models for this system

are the least accurate overall, as shown in Table 7.4.

Constant model (Equation 7.16).

P = 67.21 (7.16)

Linear CPU-utilization-based model (Equation 7.17).

P = 62.93 + 17.53 ×
uCPU

max. uCPU
(7.17)

Empirical CPU-utilization-based model (Equation 7.18).

P = 62.59 − 2461 ×
uCPU

max. uCPU
+ 2479 ×

{
uCPU

max. uCPU

}0.999

(7.18)

Linear CPU- and disk-utilization-based model (Equation 7.19).

P = 62.60 + 7.61 ×
uCPU

max. uCPU
+ 22.13 ×

udisk

max. udisk
(7.19)

Performance-counter-based model (Equation 7.20).

P = 62.59 + 25.88 ×
udisk

max. udisk
+ 6.21 ×

Pm

max. Pm

+ 5.55 ×
Pc

max. Pc
(7.20)

CHAPTER 7. POWER MODELING EVALUATION 118

Model R2 MSE Mean Err. % 90th Pct. Err. %
Const n/a 61.31 9.35 15.14
CPUut-Lin 0.3746 38.34 7.14 14.35
CPUut-Emp n/a 38.25 7.13 14.55
CPU+Disk 0.6364 22.28 5.01 9.30
Perfctr 0.6411 22.00 4.78 9.53

Table 7.4: Model calibration results for CoolSort-13 at its lowest frequency.

Figures 7.15 and 7.16 show the mean and 90th percentile percentage errors for the dif-

ferent models on each benchmark run on this system. The CPU-utilization-based models

are clearly worst, since they attribute the entire dynamic power variation of the system to

the component with the least dynamic variation. The performance-counter-based model

does best in general, since it has some information about the memory subsystem. The re-

sults for the stream benchmark are due to the effect described in Section 7.4.1, and have

to do with the fact that the performance counter model is the only one with access to

memory information. Once again, the CPU+disk model underpredicts the total system

power, and the CPU-utilization-based models slightly overpredict. In this case, however,

the CPU-utilization-based models’ overprediction comes quite close to the actual power

consumption. Overall, this configuration shows the difficulty of developing power models

for systems where the CPU does not dominate the dynamic power. One reason for this

difficulty is the lack of detailed memory and disk metrics that help model dynamic power

consumption.

7.5 CoolSort-1 Power Models

This section evaluates the power models generated for the CoolSort single-disk configu-

ration (see Section 6.5.2) at its highest processor clock frequency of 2,324 MHz and its

lowest frequency of 996 MHz.

CHAPTER 7. POWER MODELING EVALUATION 119

0

5

10

15

20

25

calib SPECfp SPECint SPECjbb stream Nsort

M
ea

n
 %

 E
rr

or

Const
CPUut-Lin
CPUut-Emp
CPU+Disk
Perfctr

Figure 7.15: Mean absolute percentage error of the Mantis-generated models on CoolSort-
13 at its lowest frequency.

CHAPTER 7. POWER MODELING EVALUATION 120

0

5

10

15

20

25

30

calib SPECfp SPECint SPECjbb stream Nsort

9
0

th
 P

er
ce

n
ti

le
 %

 E
rr

or

Const
CPUut-Lin
CPUut-Emp
CPU+Disk
Perfctr

Figure 7.16: 90th percentile absolute percentage error of the Mantis-generated models on
CoolSort-13 at its lowest frequency.

CHAPTER 7. POWER MODELING EVALUATION 121

7.5.1 CoolSort-1, Highest Clock Frequency

Equations 7.21 through 7.25 define the models for CoolSort-1 at its highest clock fre-

quency. Refer to Section 7.2 for a discussion of the model inputs used; these models use

the same performance counters as the models for the Xeon server. Table 7.5 shows the

results of fitting these equations to the calibration data.

With just one disk and running at its highest clock frequency, CoolSort-1’s dynamic

power consumption is dominated by the processor and secondarily by memory. The disk

power becomes insignificant, as the coefficients for disk utilization in Equations 7.24

and 7.25 show. With CPU as the dominant component of dynamic power consumption, the

models developed for this system are highly accurate, with R2 values similar to those for

the CPU- and memory-dominated Xeon server.

Constant model (Equation 7.21).

P = 56.59 (7.21)

Linear CPU-utilization-based model (Equation 7.22).

P = 52.78 + 33.16 ×
uCPU

max. uCPU
(7.22)

Empirical CPU-utilization-based model (Equation 7.23).

P = 52.48 + 37.40 ×
uCPU

max. uCPU
− 0.79 ×

{
uCPU

max. uCPU

}5.00

(7.23)

Linear CPU- and disk-utilization-based model (Equation 7.24).

P = 52.81 + 33.13 ×
uCPU

max. uCPU
− 0.13 ×

udisk

max. udisk
(7.24)

CHAPTER 7. POWER MODELING EVALUATION 122

Model R2 MSE Mean Err. % 90th Pct. Err. %
Const n/a 42.80 7.61 20.07
CPUut-Lin 0.8783 5.20 1.85 4.20
CPUut-Emp n/a 4.10 1.56 3.03
CPU+Disk 0.8783 5.21 1.87 4.20
Perfctr 0.9146 3.65 1.41 2.17

Table 7.5: Model calibration results for CoolSort-1 at its highest frequency.

Performance-counter-based model (Equation 7.25).

P = 52.71 + 29.50 ×
uCPU

max. uCPU
+ 1.61 ×

udisk

max. udisk

+ 11.70 ×
Pm

max. Pm
+ 16.21 ×

Pi

max. Pi

− 36.93 ×
Pc

max. Pc
+ 13.40 ×

Pu

max. Pu
(7.25)

Figures 7.17 and 7.18 show the mean and 90th percentile percentage errors, respec-

tively, for CoolSort-1 at its highest frequency. All of the models that use utilization in-

formation significantly outperform the constant power model. The only benchmark for

which any of these models predicts inaccurately is SPECjbb, for which the linear CPU and

CPU+disk models have mean errors of over 10%. These results are qualitatively similar

to the SPECjbb results on the Xeon server, described in Section 7.1, for the same reason:

SPECjbb combines high CPU utilization with relatively low instruction-level parallelism.

On this aggressively power-managed processor, as discussed in Section 7.4, clock gating is

used to reduce the power consumption of unused parts of the processor. Therefore, detailed

information about how the processor is being utilized is necessary to make accurate power

predictions.

CHAPTER 7. POWER MODELING EVALUATION 123

0

5

10

15

20

25

calib SPECfp SPECint SPECjbb stream clamAV

M
ea

n
 %

 E
rr

or

Const
CPUut-Lin
CPUut-Emp
CPU+Disk
Perfctr

Figure 7.17: Mean absolute percentage error of the Mantis-generated models on CoolSort-
1 at its highest frequency.

CHAPTER 7. POWER MODELING EVALUATION 124

0

5

10

15

20

25

calib SPECfp SPECint SPECjbb stream clamAV

9
0

th
 P

er
ce

n
ti

le
 %

 E
rr

or

Const
CPUut-Lin
CPUut-Emp
CPU+Disk
Perfctr

Figure 7.18: 90th percentile absolute percentage error of the Mantis-generated models on
CoolSort-1 at its highest frequency.

CHAPTER 7. POWER MODELING EVALUATION 125

7.5.2 CoolSort-1, Lowest Clock Frequency

Equations 7.26 through 7.30 define the models for CoolSort-1 at its lowest clock frequency.

Refer to Section 7.2 for a discussion of the model inputs used; these models use the same

performance counters as the models for the Xeon server. Table 7.6 shows the results of

fitting these equations to the calibration data.

Figures 7.19 and 7.20 show the mean and 90th percentile percentage errors, respec-

tively, of the models on this configuration. With just one disk and running at its lowest

clock frequency, CoolSort-1’s dynamic power consumption is dominated by the proces-

sor and memory. The results are qualitatively similar to the results for CoolSort-1 at the

highest frequency (Section 7.5.1), with a few differences. First, since the memory is a pro-

portionally higher consumer of dynamic power when the processor frequency is low, the

performance counter model now predicts power with a much lower percentage error for the

memory-intensive stream benchmark. Secondly, now that the processor has a lower share

of the dynamic power consumptions, the CPU-utilization-based models contain some in-

accuracies from having to attribute all of the system’s dynamic power to the processor, as

their overpredictions for the SPEC CPU benchmarks show.

Constant model (Equation 7.26).

P = 50.08 (7.26)

Linear CPU-utilization-based model (Equation 7.27).

P = 48.44 + 10.65 ×
uCPU

max. uCPU
(7.27)

Empirical CPU-utilization-based model (Equation 7.28).

P = 48.08 + 14.58 ×
uCPU

max. uCPU
− 0.69 ×

{
uCPU

max. uCPU

}4.57

(7.28)

CHAPTER 7. POWER MODELING EVALUATION 126

Model R2 MSE Mean Err. % 90th Pct. Err. %
Const n/a 7.59 3.94 10.57
CPUut-Lin 0.6785 2.44 2.03 5.18
CPUut-Emp n/a 1.68 1.67 3.37
CPU+Disk 0.6806 2.42 1.96 5.28
Perfctr 0.8756 0.94 1.14 2.05

Table 7.6: Model calibration results for CoolSort-1 at its lowest frequency.

Linear CPU- and disk-utilization-based model (Equation 7.29).

P = 48.35 + 10.71 ×
uCPU

max. uCPU
+ 0.34 ×

udisk

max. udisk
(7.29)

Performance-counter-based model (Equation 7.30).

P = 48.15 + 5.09 ×
uCPU

max. uCPU
+ 1.44 ×

udisk

max. udisk

+ 7.01 ×
Pm

max. Pm
+ 5.52 ×

Pi

max. Pi

− 5.19 ×
Pc

max. Pc
+ 3.48 ×

Pu

max. Pu
(7.30)

7.6 Laptop Power Models

The final machine on which the Mantis models were evaluated is a 2005-era laptop with

an AMD processor. Section 7.6.1 shows the results for this processor’s highest frequency,

1,800 MHz, and Section 7.6.2 shows the results for its lowest frequency, 800 MHz.

For this processor, we were unable to use any main memory-related performance coun-

ters. The “memory requests” performance counter is not analogous to the “memory bus

transactions” performance counter on the Intel processors studied in this chapter. Memory

power is related to the actual memory traffic, which “memory bus transactions” captures.

CHAPTER 7. POWER MODELING EVALUATION 127

0

2

4

6

8

10

12

14

16

clam SPECfp SPECint SPECjbb stream clamAV

M
ea

n
 %

 E
rr

or

Const
Goog-Lin
Goog-Emp
Heath
Zesti

Figure 7.19: Mean absolute percentage error of the Mantis-generated models on CoolSort-
1 at its lowest frequency.

CHAPTER 7. POWER MODELING EVALUATION 128

0

2

4

6

8

10

12

14

16

clam SPECfp SPECint SPECjbb stream clamAV

9
0

th
 P

er
ce

n
ti

le
 %

 E
rr

or

Const
Goog-Lin
Goog-Emp
Heath
Zesti

Figure 7.20: 90th percentile absolute percentage error of the Mantis-generated models on
CoolSort-1 at its lowest frequency.

CHAPTER 7. POWER MODELING EVALUATION 129

“Memory requests,” however, only captures the requests that the processor is aware of mak-

ing, which means that it will undercount the memory traffic for memory-intensive bench-

marks with predictable access patterns that are handled by the prefetcher. For this system,

a power model using “memory requests” was generated using the calibration suite, which

stresses memory with predictable access patterns. For the irregular accesses in the gcc

benchmark, however, the model proved disastrous, as the number of “memory requests”

far exceeded anything seen in the calibration data. We therefore dropped this model pa-

rameter. Attempting to instead use the performance counter for DRAM pages accessed re-

sulted in unacceptably high overhead in the performance-counting software, so ultimately

the only performance counters used were unhalted clock cycles (pu), floating-point instruc-

tions dispatched (p f), and number of instructions retired (pi). The number of last-level

cache references did not improve the model as much as these three counters, and so it was

not used in the models.

7.6.1 Laptop, Highest Clock Frequency

Equations 7.31 through 7.35 define the models for the laptop at its highest frequency. The

dynamic power variation for this configuration is dominated by the CPU, as the coeffi-

cients of Equations 7.34 and 7.35 show. As with the other CPU-dominated systems, the R2

goodness-of-fit values are high (above 0.8), as shown in Table 7.7.

Figures 7.21 and 7.22 show the mean and 90th percentile percentage errors, respectively,

for each benchmark on this system. Note that the gcc benchmark is used rather than the

entire SPECint suite, and that gromacs is used instead of the entire SPECfp suite, due to the

limited resources on this system. All of the models significantly outperform the constant

prediction; overall, the best model is the linear CPU utilization model. Lacking information

about the memory subsystem, the performance counter model no longer excels at predicting

power for stream. Because of the limitations of this system’s processor, SPECjbb is a

CHAPTER 7. POWER MODELING EVALUATION 130

much more CPU- and memory-intensive benchmark than on the other machines, which is

underpredicted by the CPU+disk and performance-counter-based models. ClamAV is the

hardest test case for the models overall, as they all overpredict the power consumption at

this medium level of CPU utilization (60%).

Constant model (Equation 7.31).

P = 25.94 (7.31)

Linear CPU-utilization-based model (Equation 7.32).

P = 20.73 + 17.56 ×
uCPU

max. uCPU
(7.32)

Empirical CPU-utilization-based model (Equation 7.33).

P = 19.09 + 61.1 ×
uCPU

max. uCPU
− 42.76 ×

{
uCPU

max. uCPU

}1.22

(7.33)

Linear CPU- and disk-utilization-based model (Equation 7.34).

P = 19.39 + 16.81 ×
uCPU

max. uCPU
+ 3.70 ×

udisk

max. udisk
(7.34)

Performance-counter-based model (Equation 7.35).

P = 13.24 + ×
uCPU

max. uCPU
+ 2.48 ×

udisk

max. udisk

+ 3.139 ×
Pu

max. Pu
+ 2.51 ×

P f

max. P f

+ 3.37 ×
Pi

max. Pi
(7.35)

CHAPTER 7. POWER MODELING EVALUATION 131

Model R2 MSE Mean Err. % 90th Pct. Err. %
Const n/a 46.14 22.17 39.49
CPUut-Lin 0.8365 7.54 8.65 15.50
CPUut-Emp n/a 6.17 6.68 13.78
CPU+Disk 0.8933 4.92 5.47 11.53
Perfctr 0.8962 4.79 5.36 11.44

Table 7.7: Model calibration results for the laptop at its highest frequency.

0

5

10

15

20

25

30

35

calib gromacs gcc SPECjbb stream clamAV

M
ea

n
 %

 E
rr

or

Const
CPUut-Lin
CPUut-Emp
CPU+Disk
Perfctr

Figure 7.21: Mean absolute percentage error of the Mantis-generated models on the laptop
at its highest frequency.

CHAPTER 7. POWER MODELING EVALUATION 132

0

5

10

15

20

25

30

35

40

calib gromacs gcc SPECjbb stream clamAV

9
0

th
 P

er
ce

n
ti

le
 %

 E
rr

or

Const
CPUut-Lin
CPUut-Emp
CPU+Disk
Perfctr

Figure 7.22: 90th percentile absolute percentage error of the Mantis-generated models on
the laptop at its highest frequency.

CHAPTER 7. POWER MODELING EVALUATION 133

7.6.2 Laptop, Lowest Clock Frequency

Equations 7.36 through 7.40 define the models for the laptop at its highest frequency. This

configuration has much lower dynamic power consumption than the high-frequency con-

figuration, as the coefficients of Equations 7.39 and 7.40 show. Since the CPU is a less

dominant consumer of dynamic power, the R2 goodness-of-fit values are also lower than in

the high-frequency configuration, as shown in Table 7.8.

Figures 7.23 and 7.24 show the mean and 90th percentile percentage errors, respectively,

for each benchmark on this system. The main differences between this configuration and

the high-frequency configuration are in the clamAV benchmark, where the overpredictions

for this configuration are slightly lower, and in the gromacs floating-point benchmark. For

gromacs, all of the models now overpredict power. The reason is that gromacs thoroughly

stresses this CPU in terms of both utilization and instruction-level parallelism. However,

it is largely resident in cache and does not stress the memory subsystem as thoroughly.

Since none of the models have memory information, they are all forced to attribute the en-

tire dynamic power to CPU utilization characteristics, significantly overpredicting the total

power when the CPU is the only highly utilized component. This is particularly problem-

atic at this low frequency, since the CPU is a proportionately smaller consumer of the total

dynamic power.

Constant model (Equation 7.36).

P = 15.98 (7.36)

Linear CPU-utilization-based model (Equation 7.37).

P = 14.33 + 5.33 ×
uCPU

max. uCPU
(7.37)

Empirical CPU-utilization-based model (Equation 7.38).

P = 14.25 + 6.13 ×
uCPU

max. uCPU
− 0.78 ×

{
uCPU

max. uCPU

}1.63

(7.38)

CHAPTER 7. POWER MODELING EVALUATION 134

Model R2 MSE Mean Err. % 90th Pct. Err. %
Const n/a 4.33 10.09 19.48
CPUut-Lin 0.7863 0.93 4.11 7.99
CPUut-Emp n/a 0.92 4.04 7.95
CPU+Disk 0.8152 0.80 3.34 7.12
Perfctr 0.8272 0.75 3.20 6.41

Table 7.8: Model calibration results for the laptop at its lowest frequency.

Linear CPU- and disk-utilization-based model (Equation 7.39).

P = 14.05 + 5.46 ×
uCPU

max. uCPU
+ 0.91 ×

udisk

max. udisk
(7.39)

Performance-counter-based model (Equation 7.40).

P = 13.96 + 3.33 ×
uCPU

max. uCPU
+ 0.67 ×

udisk

max. udisk

+ 2.80 ×
Pu

max. Pu
+ 0.26 ×

P f

max. P f

− 2.61 ×
Pi

max. Pi
(7.40)

7.7 Conclusions

The results presented in this section show that simple, high-level models can be used to

accurately predict power for a wide range of systems and workloads. They also highlight

some potential pitfalls in developing power models:

• CPU utilization as a proxy for power consumption. CPU utilization is often con-

sidered a first-order proxy for dynamic power consumption, the logic being that

the CPU is the dominant consumer of dynamic power and that its power is deter-

mined largely by its power state (active or sleeping). For systems that are not CPU-

dominated (e.g. fileservers, some laptops) or workloads that are not CPU-intensive

CHAPTER 7. POWER MODELING EVALUATION 135

0

5

10

15

20

25

calib gromacs gcc SPECjbb stream clamAV

M
ea

n
 %

 E
rr

or

Const
CPUut-Lin
CPUut-Emp
CPU+Disk
Perfctr

Figure 7.23: Mean absolute percentage error of the Mantis-generated models on the laptop
at its lowest frequency.

CHAPTER 7. POWER MODELING EVALUATION 136

0

5

10

15

20

25

calib gromacs gcc SPECjbb stream clamAV

9
0

th
 P

er
ce

n
ti

le
 %

 E
rr

or

Const
CPUut-Lin
CPUut-Emp
CPU+Disk
Perfctr

Figure 7.24: 90th percentile absolute percentage error of the Mantis-generated models on
the laptop at its lowest frequency.

CHAPTER 7. POWER MODELING EVALUATION 137

(e.g. streaming, sorting), these assumptions break down. They also break down in

two situations, even for systems and workloads that are CPU-dominated. The first is

in processors with shared resources, such as multicore processors, where power con-

sumption is not a linear function of utilization. The second is in aggressively power-

managed processors, where the active-state power consumption may vary widely

depending on what the CPU is actually doing. Since current hardware trends are to-

ward less CPU-dominated systems [5], multicore processors, and aggressive power

management, OS-reported CPU utilization will be a less and less useful proxy for

power consumption.

• Assuming that more information yields a better model. If a large component of

the system’s dynamic power is not directly accounted for by the power models, less

detailed models may actually yield better results, as seen with the stream benchmark

on CoolSort-13. In general, models’ relative accuracy will be unpredictable if a large

component of dynamic power is not modeled.

• Blindly applying performance counters across systems. While the same basic

group of performance counters (unhalted clock cycles, instructions retired/ILP, last-

level cache references, memory bandwidth, and floating-point instructions executed)

can be used to model power across a wide variety of systems, the nuances of how

these counters are defined from platform to platform do matter. To yield an accurate

model, a performance event must be represented over its entire range in the calibra-

tion suite. With the laptop’s AMD processor, the distinction between AMD’s “mem-

ory requests” performance counter and Intel’s “memory bus transactions” counter

became clear: the former was not well exercised during the calibration suite, due to

its predictable access patterns, and so it did not yield accurate models.

• Lack of insight into memory and disk power. Systems that were CPU-dominated

resulted in more accurate models than systems dominated by other components.

CHAPTER 7. POWER MODELING EVALUATION 138

While some have argued that CPU manufacturers should implement event coun-

ters for energy-related events [34], the current CPU performance counters do give

some insight into power consumption. Similar high-level interfaces do not exist for

memory and disk, limiting the accuracy of this approach for systems where those

components are dominant consumers of power. This problem is likely to increase in

the future, since CPUs’ percentage of overall system power is decreasing [5].

In general, across the wide variety of systems tested, the performance-counter-based

power model we proposed met our accuracy requirements on all benchmarks and was gen-

eral enough to be easily portable across systems. For some systems, simpler approaches

may be just as good. The Mantis modeling methodology allows an entire family of models

to easily be developed, and their trade-offs evaluated, for a wide range of computer systems.

Chapter 8

Conclusions

139

CHAPTER 8. CONCLUSIONS 140

This dissertation examined the question of how to provide widely applicable models and

metrics for energy-efficient computer systems. It presented the specification for JouleSort,

the first complete full-system energy-efficiency benchmark to be proposed, and it described

the Mantis methodology for generating and evaluating a family of high-level, full-system

power models.

JouleSort was the first full-system energy-efficiency benchmark with fully specified

workload, metric, and rules. This dissertation presented the complete benchmark spec-

ification, highlighting the challenges and pitfalls of energy-efficiency benchmarking that

distinguish it from benchmarking pure performance. It also evaluated the JouleSort bench-

mark scores of a number of systems, including previous generations of high-performing

and highly cost-efficient sorting systems as well as current commodity machines. These

evaluations motivated the design of the CoolSort system, the machine with the highest

known JouleSort score. This machine, consisting of a commodity mobile CPU and 13 lap-

top drives connected by server-style I/O interfaces, differs greatly from today’s commer-

cially available servers. It remains a high-scoring system for metrics using several different

combinations of cost, performance, and power.

Mantis generates full-system power models by correlating AC power measurements

with software utilization metrics. This dissertation evaluated several different families of

Mantis-generated models on several computer systems with widely varying components

and power footprints, identifying models that are both highly accurate and highly portable.

This evaluation demonstrates the trade-off between simplicity and accuracy, and it also

shows the limitations of previously proposed models based solely on OS-reported compo-

nent utilization for systems where the CPU is either aggressively power-managed or is not

the dominant consumer of dynamic power. Given hardware trends in exactly these direc-

tions, these models will be increasingly inadequate in the future, and the specific modeling

strategy we proposed that uses both OS-reported utilization and CPU performance counters

will be increasingly necessary for accurate power prediction.

CHAPTER 8. CONCLUSIONS 141

8.1 Future Work

Metrics and models for energy-efficient computing have only recently begun to receive

systematic attention. The JouleSort and Mantis work described in this dissertation leaves

some questions unaddressed and suggests some possible extensions to cover a wider range

of systems.

• In designing the CoolSort system for the JouleSort benchmark, we focused primarily

on the 100 GB benchmark class. The most energy-efficient systems for the 10 GB

and 1 TB benchmark classes may be constructed very differently from CoolSort’s

mobile fileserver design. At the 10 GB class, ultra-low-power components and flash

drives are promising technologies, although the question of how best to connect them

remains open [58]. For the 1 TB class, a more traditional category of server may be

best. The Sun UltraSPARC T1 and T2 processor designs, which maximize memory

bandwidth and thread-level parallelism at the cost of processor complexity that is

largely unneeded by sort, seem ideal as sorting processors [44]. The question of how

to build an energy-efficient sorting system around such a processor, and what class

of components to use, has yet to be explored.

• The JouleSort benchmark does not address every possible domain of interest for en-

ergy efficiency. The workload is I/O-intensive, making it a less useful benchmark in

situations where I/O bandwidth is not important. It also allows systems to run at their

most energy-efficient operating point, which is currently peak utilization. However,

many data center and server machines are underutilized [5]. The SPECpower ssj

benchmark addresses this area to some extent, but its CPU- and memory-intensive

workload is very different from JouleSort’s; in addition, it summarizes energy effi-

ciency at ten different operating points with one number, meaning that the energy

efficiency at any particular utilization is unclear from the benchmark score. Finally,

JouleSort is not a data-center-level benchmark, since it does not include power and

CHAPTER 8. CONCLUSIONS 142

cooling; developing a fair workload, metric, and rules for a building-scale energy-

efficiency computing benchmark is a challenge that has yet to be addressed.

• The models investigated in this work were very simple, not only in the number of

inputs sampled, but also in the complexity of the equations used to obtain power pre-

dictions from utilization metrics. As Chapter 7 showed, these simple, mostly linear

models may not adequately express the behavior of some systems, multicores in par-

ticular. Combining the empirical power model for CPU power with the information

provided by disk utilization and CPU performance counters is one obvious extension.

• The models we investigated assume that the dynamic power correlates to the utiliza-

tion of CPU, memory, and disk. Systems with other components, such as graphics

processors or power-aware networking equipment, will require adjustments to the

calibration suite. Furthermore, future power optimizations are likely to pose model-

ing challenges: in particular, the dynamic power consumption of the cooling system

and aggressive power-management policies in individual components would have to

be visible to the OS and incorporated in the model.

• As Chapter 7 showed, power models are less accurate for machines whose dynamic

power consumption is not CPU-dominated. Since the CPU is likely to be a less

dominant component in the future [5], it is important to understand how to develop

accurate power models for other components. Part of the solution may be to offer

high-level interfaces to detailed metrics for these components, analogous to CPU

performance counters and their interface libraries.

• Finally, while several of the models evaluated in Chapter 7 have been employed in

data center energy-efficiency optimizations, the performance counter-based model

CHAPTER 8. CONCLUSIONS 143

has not yet been incorporated into a data center scheduler. Evaluating it in this con-

text would help to quantify the energy-efficiency improvements of increased model

accuracy.

Bibliography

[1] Anonymous. A measure of transaction processing performance. Datamation,

31(7):112–118, April 1985.

[2] ASHRAE handbook. Online. http://resourcecenter.ashrae.org/store/

ashrae/newstore.cgi?categoryid=146.

[3] Reza Azimi, Michael Stumm, and Robert W. Wizniewski. Online performance anal-

ysis by statistical sampling of microprocessor performance counters. In Proceedings

of the International Conference on Supercomputing (ICS), June 2005.

[4] Luiz André Barroso. The price of performance. ACM Queue, 3(7):48–53, September

2005.

[5] Luiz André Barroso and Urs Hölzle. The case for energy-proportional computing.

IEEE Computer, 40(12):33–37, December 2007.

[6] Frank Bellosa. The benefits of event-driven energy accounting in power-sensitive

systems. In Proceedings of the ACM SIGOPS European Workshop, June 2000.

[7] Pradip Bose. Power-efficient microarchitectural choices at the early definition stage.

Keynote address at the Workshop on Power-Aware Computer Systems (PACS), De-

cember 2003.

144

BIBLIOGRAPHY 145

[8] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A framework for

architectural-level power analysis and optimizations. In Proceedings of the Interna-

tional Symposium on Computer Architecture (ISCA), June 2000.

[9] Doug Burger and Todd M. Austin. The SimpleScalar tool set, version 2.0. ACM

SIGARCH Computer Architecture News, 25(3):13–25, June 1997.

[10] Todd L. Cignetti, Kirill Komarov, and Carla Schlatter Ellis. Energy estimation tools

for the PalmT M. In Proceedings of the International Workshop on Modeling, Analysis

and Simulation of Wireless and Mobile Systems, 2000.

[11] Clam AntiVirus. Online. http://www.clamav.net/.

[12] Gilberto Contreras and Margaret Martonosi. Power prediction for Intel XScale® pro-

cessors using performance monitoring unit events. In Proceedings of the International

Symposium on Low-Power Electronics and Design (ISLPED), August 2005.

[13] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on large

clusters. In Proceedings of the USENIX Symposium on Operating System Design and

Implementation (OSDI), December 2004.

[14] Dimitris Economou, Suzanne Rivoire, et al. Full-system power analysis and modeling

for server environments. In Proceedings of the Workshop on Modeling, Benchmark-

ing, and Simulation (MoBS), June 2006.

[15] The Embedded Microprocessor Benchmark Consortium (EEMBC). Online. http:

//www.eembc.org.

[16] The Embedded Microprocessor Benchmark Consortium (EEMBC). Energy-

Bench™ version 1.0 power/energy benchmarks. Online. http://www.eembc.org/

benchmark/power_sl.php.

BIBLIOGRAPHY 146

[17] Energy Star program requirements for computers: Version 4.0. On-

line, 2007. http://www.energystar.gov/ia/partners/prod_development/

revisions/downloads/computer/Computer_Spec_Final.pdf.

[18] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz André Barroso. Power provisioning for a

warehouse-sized computer. In Proceedings of the International Symposium on Com-

puter Architecture (ISCA), June 2007.

[19] Wes Felter, Karthick Rajamani, et al. A performance-conserving approach for reduc-

ing peak power consumption in server systems. In Proceedings of the International

Conference on Supercomputing (ICS), June 2005.

[20] Ricardo Gonzalez and Mark Horowitz. Energy dissipation in general purpose mi-

croprocessors. IEEE Journal of Solid-State Circuits, 31(9):1277–1284, September

1996.

[21] Naga Govindaraju, Jim Gray, et al. GPUTeraSort: High performance graphics copro-

cessor sorting for large database management. In SIGMOD Conference on Manage-

ment of Data, June 2006.

[22] The Green Grid. The Green Grid data center power efficiency metrics: PUE and

DCiE. Online, 2007. http://www.thegreengrid.org/gg_content/TGG_Data_

Center_Power_Efficiency_Metrics_PUE_and_DCiE.pdf.

[23] The Green Grid. The Green Grid opportunity: Decreasing datacenter and other

IT energy usage patterns. Online, 2007. http://www.thegreengrid.org/gg_

content/Green_Grid_Position_WP.pdf.

[24] The Green Grid. A framework for data center energy productivity. Online, 2008.

http://www.thegreengrid.org/home/White_Paper_13_-_Framework_for_

Data_Center_Energy_Productivity5.9.08.pdf.

BIBLIOGRAPHY 147

[25] Sudhanva Gurumurthi, Anand Sivasubramaniam, et al. Using complete machine sim-

ulation for software power estimation: the SoftWatt approach. In Proceedings of

the International Symposium on High-Performance Computer Architecture (HPCA),

February 2002.

[26] Taliver Heath, Ana Paula Centeno, et al. Mercury and Freon: temperature emulation

and management for server systems. In Proceedings of the International Confer-

ence on Architectural Support for Programming Languages and Operating Systems

(ASPLOS), October 2006.

[27] Taliver Heath, Bruno Diniz, et al. Energy conservation in heterogeneous server clus-

ters. In Proceedings of the Symposium on Principles and Practice of Parallel Pro-

gramming (PPoPP), June 2005.

[28] HP Enterprise Configurator power calculators. Online, October 2006. http:

//h30099.ww3.hp.com/configurator/powercalcs.asp.

[29] Hitachi Travelstar 5K160 datasheet. Online. http://www.hitachigst.com/hdd/

support/5k160/5k160.htm.

[30] Xing Huang, Bo Huang, and Binheng Song. Bytes-split-index sort (BSIS).

Online, 2006. http://research.microsoft.com/barc/SortBenchmark/

BSIS-PennySort_2006.pdf.

[31] Intel® Core™ 2 Duo mobile processor product brief. Online. http://www.intel.

com/products/processor/core2duo/mobile_prod_brief.htm.

[32] Canturk Isci and Margaret Martonosi. Runtime power monitoring in high-end pro-

cessors: Methodology and empirical data. In Proceedings of the International Sym-

posium on Microarchitecture (MICRO-36), December 2003.

BIBLIOGRAPHY 148

[33] Russ Joseph and Margaret Martonosi. Run-time power estimation in high perfor-

mance microprocessors. In Proceedings of the International Symposium on Low-

Power Electronics and Design (ISLPED), August 2001.

[34] Ismail Kadayif, T. Chinoda, et al. vEC: Virtual energy counters. In Proceedings of

the ACM SIGPLAN/SIGSOFT Workshop on Program Analysis for Software Tools and

Engineering (PASTE), June 2001.

[35] Kingston memory module specification: KVR667D2N5/1G. Online. http://www.

valueram.com/datasheets/KVR667D2N5_1G.pdf.

[36] Ramakrishna Kotla, Anirudh Devgan, et al. Characterizing the impact of different

memory-intensity levels. In Proceedings of the IEEE Annual Workshop on Workload

Characterization (WWC-7), October 2004.

[37] James Laudon. Performance/Watt: the new server focus. SIGARCH Computer Ar-

chitecture News, 33(4):5–13, November 2005.

[38] Tao Li and Lizy Kurian John. Run-time modeling and estimation of operating sys-

tem power consumption. In Proceedings of the ACM SIGMETRICS International

Conference on Measurement and Modeling of Computer Systems, June 2003.

[39] M. R. Lindeburg. Mechanical Engineering Reference Manual. Professional Publica-

tions, tenth edition, 1997.

[40] Peter Lyman, Hal R. Varian, et al. How much information? Online, 2003. http:

//www2.sims.berkeley.edu/research/projects/how-much-info-2003/.

[41] Christopher Malone and Christian Belady. Metrics and an infrastructure model to

evaluate data center efficiency. In Proceedings of the Pacific Rim/ASME International

Electronic Packaging Technical Conference and Exhibition (IPACK), July 2007.

BIBLIOGRAPHY 149

[42] John Markoff and Saul Hansell. Hiding in plain sight, Google seeks more power. New

York Times, Jun. 14, 2006.

[43] John D. McCalpin. STREAM: Sustainable memory bandwidth in high performance

computers. Online. http://www.cs.virginia.edu/stream/.

[44] Harlan McGhan. Niagara 2 opens the floodgates: Niagara 2 is the closest thing yet to

a true server on a chip. Microprocessor Report, Nov. 1, 2006.

[45] Justin Meza, Mehul A. Shah, and Parthasarathy Ranganathan. An energy-efficient

approach to low-power computing. Technical Report HPL-2008-67, Hewlett-Packard

Laboratories, 2008.

[46] Justin Moore. COD: Cluster-on-demand. Online, 2005. http://issg.cs.duke.

edu/cod/.

[47] Sergiu Nedevschi, Lucian Popa, et al. Reducing network energy consumption via

sleeping and rate-adaptation. In Proceedings of the USENIX Symposium on Net-

worked System Design and Implementation (NSDI), April 2008.

[48] Chris Nyberg and Charles Koester. Ordinal Technology – Nsort home page. Online,

2007. http://www.ordinal.com.

[49] Chandrakant D. Patel. A vision of energy-aware computing from chips to data centers.

In Proceedings of the International Symposium on Micro-Mechanical Engineering

(ISMME), December 2003.

[50] Chandrakant D. Patel, Cullen E. Bash, et al. Smart cooling of data centers. In Pro-

ceedings of the Pacific Rim/ASME International Electronic Packaging Technical Con-

ference and Exhibition (IPACK), July 2003.

BIBLIOGRAPHY 150

[51] Chandrakant D. Patel and Parthasarathy Ranganathan. Enterprise power and cooling.

Tutorial at the International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), October 2006.

[52] Chandrakant D. Patel and Amip J. Shah. Cost model for planning, development and

operation of a data center. Technical Report HPL-2005-107(R.1), Hewlett-Packard

Laboratories, Jun. 9, 2005.

[53] Perfmon2: The hardware-based performance monitoring interface for Linux. Online.

http://perfmon2.sourceforge.net/.

[54] Antoine Petitet, R. Clint Whaley, et al. HPL - a portable implementation of the high-

performance Linpack benchmark for distributed-memory computers. Online, 2004.

http://www.netlib.org/benchmark/hpl/.

[55] Parthasarathy Ranganathan and Phil Leech. Simulating complex enterprise workloads

using utilization traces. In Proceedings of the Workshop on Computer Architecture

Evaluation using Commercial Workloads (CAECW), February 2007.

[56] Parthasarathy Ranganathan, Phil Leech, et al. Ensemble-level power management

for dense blade servers. In Proceedings of the Annual International Symposium on

Computer Architecture (ISCA), June 2006.

[57] Suzanne Rivoire, Mehul A. Shah, et al. JouleSort: A balanced energy-efficiency

benchmark. In SIGMOD Conference on Management of Data, June 2007.

[58] Suzanne Rivoire, Mehul A. Shah, et al. Models and metrics to enable energy-

efficiency optimizations. IEEE Computer, 40(12):39–48, December 2007.

[59] Mendel Rosenblum, Stephen A. Herrod, et al. Complete computer system simulation:

the SimOS approach. IEEE Parallel and Distributed Technology, 3(4):34–43, Winter

1995.

BIBLIOGRAPHY 151

[60] Hazim Shafi, Patrick J. Bohrer, et al. Design and validation of a performance and

power simulator for PowerPC systems. IBM Journal of Research and Development,

47(5–6), September/November 2003.

[61] Kevin Skadron, Mircea R. Stan, et al. Temperature-aware microarchitecture: Model-

ing and implementation. ACM Transactions on Architecture and Code Optimization,

1(1):94–125, March 2004.

[62] Sort Benchmark home page. Online. http://research.microsoft.com/barc/

sortbenchmark/.

[63] Standard Performance Evaluation Corporation (SPEC). SPEC CPU 2000. Online.

http://www.spec.org/cpu2000/.

[64] Standard Performance Evaluation Corporation (SPEC). SPEC CPU 2006. Online.

http://www.spec.org/cpu2006/.

[65] Standard Performance Evaluation Corporation (SPEC). SPEC JBB2000. Online.

http://www.spec.org/jbb2000/.

[66] Standard Performance Evaluation Corporation (SPEC). SPEC JBB2005. Online.

http://www.spec.org/jbb2005/.

[67] Standard Performance Evaluation Corporation (SPEC). SPECjbb2005 frequently

asked questions. Online. http://www.spec.org/jbb2005/docs/FAQ.html.

[68] Standard Performance Evaluation Corporation (SPEC). SPECpower ssj2008. Online.

http://www.spec.org/specpower/.

[69] Standard Performance Evaluation Corporation (SPEC). SPECweb2005. Online.

http://www.spec.org/web2005/.

BIBLIOGRAPHY 152

[70] John R. Stanley, Kenneth G. Brill, and Jonathan Koomey. Four metrics de-

fine data center “greenness”. Online. http://uptimeinstitute.org/wp_pdf/

(TUI3009F)FourMetricsDefineDataCenter.pdf.

[71] Sun Microsystems. SWaP (Space, Watts and Performance) Metric. Online, 2007.

http://www.sun.com/servers/coolthreads/swap/.

[72] Transaction Processing Performance Council. TPC-C. Online. http://www.tpc.

org/tpcc/.

[73] Transaction Processing Performance Council. TPC-H. Online. http://www.tpc.

org/tpch/.

[74] U.S. Environmental Protection Agency, ENERGY STAR Program. Re-

port to Congress on server and data center energy efficiency. Online,

Aug 2006. http://www.energystar.gov/ia/partners/prod_development/

downloads/EPA_Datacenter_Report_Congress_Final1.pdf.

[75] Andreas Weissel and Frank Bellosa. Process cruise control: Event-driven clock scal-

ing for dynamic power management. In Proceedings of the International Conference

on Compilers, Architecture and Synthesis for Embedded Systems (CASES), Oct 2002.

[76] Steven J. E. Wilton and Norman P. Jouppi. CACTI: An enhanced cache access and

cycle time model. IEEE Journal of Solid-State Circuits, 31(5):677–688, May 1996.

[77] Lei Yang, Hui Huang, et al. SheenkSort: 2003 Performance / Price Sort and

PennySort. Online, March 2003. http://research.microsoft.com/barc/

SortBenchmark/SheenkSort.pdf.

[78] Dong Ye, Joydeep Ray, et al. Performance characterization of SPEC CPU2006 in-

teger benchmarks on x86-64 architecture. In Proceedings of the IEEE International

Symposium on Workload Characterization (IISWC), October 2006.

BIBLIOGRAPHY 153

[79] Victor Zyuban and Peter Kogge. Optimization of high-performance superscalar archi-

tectures for energy efficiency. In Proceedings of the IEEE Symposium on Low Power

Electronics and Design, August 2000.

