# Models and Metrics for Energy-Efficient Computer Systems

Suzanne Rivoire *May 22, 2007 Ph.D. Defense EE Department, Stanford University* 

### Power and Energy Concerns

#### Processors: power density



# Power and Energy Concerns (2)

- Personal computers
  - Mobile devices: battery life/usability
  - Desktops: electricity costs, noise
- Servers and data centers
  - Power and cooling costs
  - Reliability
  - Density/scalability
  - Pollution
  - Load on utilities

# **Underlying Questions**

- □ Metrics: What are we aiming for?
  - Compare energy efficiency
  - Identify / motivate new designs
- □ Models: How do we get there?
  - Understand how high-level properties affect power
  - Improve power-aware scheduling policies / usage

### **Talk Overview**

#### Metrics: JouleSort benchmark

- First complete, full-system energy-efficiency benchmark
- Design of winning system
- **Models:** Mantis approach
  - Generates family of high-level full-system models
  - Generic, accurate, portable

### JouleSort energy-efficiency benchmark

- JouleSort benchmark specification
  - Workload, metric, guidelines
  - Rationale and pitfalls
- Energy-efficient system design: 2007 "winner"
  - 3.5× better than previous best
  - Insights for future designs

[S. Rivoire, M. A. Shah, P. Ranganathan, C. Kozyrakis, "JouleSort: A Balanced Energy-Efficiency Benchmark," SIGMOD 2007.]

# Why a benchmark?

- Track progress, compare systems, spur innovation
- Current benchmarks/metrics





- Limitations of current metrics:
  - Under-specified or "under construction"
  - Limited to a particular component or domain

### Benchmark design goals

- Holistic and balanced: exercises all core components
- Inclusive and representative: meaningful and implementable on many different machines
- History-proof: meaningful comparisons between scores from different years

### Benchmark specification overview

Workload

□ Metric



### Workload: External sort

- Sort randomly permuted 100-byte records with 10-byte keys
- □ From file on non-volatile store to file on non-volatile store ("external" storage)

### External sort workload

### Simple and balanced Exercises all core components CPU, memory, disk, I/O, OS, filesystem End-to-end measure of improvement Inclusive of variety of systems PDAs, laptops, desktops, supercomputers Representative of sequential I/O tasks Technology trend bellwether Supercomputers to clusters, GPU?

# Existing sort benchmarks

□ Sort benchmarks used since 1985

### Pure performance

- MinuteSort: How many records sorted in 1 min?
- Terabyte: How much time to sort 1 TB?

#### Price-performance

- PennySort: How many records sorted for \$0.01?
- Performance-Price: MinuteSort/\$\$

More info at http://research.microsoft.com/barc/SortBenchmark/

# JouleSort metric choices

- □ How to weigh power and performance?
  - Equally (energy)?
    Energy (Joules) = Power (Watts) × Time (sec.)
  - Privilege performance (energy-delay product)?
- □ What to fix and what to compare?
  - Fix energy budget and compare records sorted?
  - Fix num. records and compare energy?
  - Fix time budget and compare records/Joule?



### Final metric: Fixed input size

- □ 3 classes: 10GB, 100GB, 1TB
- □ Winner: minimum energy
- Report (records sorted / Joule)
- □ Inter-class comparisons imperfect
- □ Adjust classes as technology improves

### Energy measurement setup



### **Talk Overview**

#### Metrics: JouleSort benchmark

- First complete, full-system energy-efficiency benchmark
- Design of winning system
- **Models:** Mantis approach
  - Generates family of high-level full-system models
  - Generic, accurate, portable

### Representative systems

|                            | Disks | CPU % | SRecs | Pwr (W) | SRecs/J |
|----------------------------|-------|-------|-------|---------|---------|
| GPUTeraSort<br>(estimated) | 9     | n/a   | 59GB  | 290     | ~3200   |
| Blade                      | 1     | 11%   | 5GB   | 90      | ~300    |
| Low-end<br>server          | 2     | 26%   | 10GB  | 140     | ~1200   |
| Laptop                     | 1     | 1%    | 10GB  | 22      | ~3400   |
| Commodity fileserver       | 12    | >90%  | 10GB  | 406     | ~3800   |

### Representative systems

|                         | Disks | CPU % | SRecs | Pwr (W) | SRecs/J |
|-------------------------|-------|-------|-------|---------|---------|
| GPUTeraSort (estimated) | 9     | n/a   | 59GB  | 290     | ~3200   |
| Blade                   | 1     | 11%   | 5GB   | 90      | ~300    |
| Low-end<br>server       | 2     | 26%   | 10GB  | 140     | ~1200   |
| Laptop                  | 1     | 1%    | 10GB  | 22      | ~3400   |
| Commodity fileserver    | 12    | >90%  | 10GB  | 406     | ~3800   |

### Representative systems

|                         | Disks | CPU % | SRecs | Pwr (W) | SRecs/J |
|-------------------------|-------|-------|-------|---------|---------|
| GPUTeraSort (estimated) | 9     | n/a   | 59GB  | 290     | ~3200   |
| Blade                   | 1     | 11%   | 5GB   | 90      | ~300    |
| Low-end<br>server       | 2     | 26%   | 10GB  | 140     | ~1200   |
| Laptop                  | 1     | 1%    | 10GB  | 22      | ~3400   |
| Commodity fileserver    | 12    | >90%  | 10GB  | 406     | ~3800   |

# Energy-Efficient Components: Processor



# Energy-Efficient Components: Disks





### Maximizing performance

- Balanced sort: enough disks to fully utilize CPU
- Disks running near peak BW



### CoolSort: The 100 GB winner

□ 11,300 records sorted per Joule

□ 3.5× more efficient than GPUTeraSort

□ Average sorting power: 100 W

### Insights for future designs

- Low-hanging fruit: use low-power HW
  - Best power-performance trade-off
  - Still need to fully utilize resources
  - Challenge: adequate interfaces and "glue" to bring laptop components into servers
- Scaledown efficiency
  - Limited dynamic range
  - For fixed HW: peak efficiency = peak performance
  - How can we design machines that perform equally well in different benchmark classes?

### **Benchmark limitations**

- Tests energy efficiency at high utilization -but most servers are under-utilized
  - How efficient is system at 50% utilization? 20%?
- Doesn't measure building power/cooling
- Real goal: TCOSort
  - JouleSort and PennySort give pieces of the answer

# JouleSort Conclusions

- Need energy-efficiency benchmark
- JouleSort specification
  - Simple, representative, full-system benchmark
  - Workload, metric, measurement rules
- CoolSort system
  - 3.5× better than 2006 estimated winner
  - Mobile components, server-class interfaces
- Part of the sort benchmark suite
  - joulesort.stanford.edu

### **Talk Overview**

- Metrics: JouleSort benchmark
  - First complete, full-system energy-efficiency benchmark
  - Design of winning system
- □ Models: Mantis approach
  - Generates family of high-level full-system models
  - Generic, accurate, portable

### Who needs power models?

- Component and system designers
  How do design decisions affect power?
- Users
  - How do my usage patterns affect power?
- Data center schedulers
  - How will workload distribution decisions affect power?

# Power modeling goals

- Goal: Online, full-system power models
- Model requirements
  - Non-intrusive and low-overhead
  - Easy to develop and use
  - Fast enough for online use
  - Reasonably accurate (within 10%)
  - Inexpensive
  - Generic and portable

### Power modeling approaches

### Detailed component models

- Simulation-based
- Hardware metric-based

### High-level full-system models

### Detailed models: Simulation-based

#### Input:

- Current state
- Architecture
- Circuit parameters

Simulation

**Output:** Predicted power (component)

- Inexpensive, arbitrarily accurate
- □ Not full-system
- □ Slow (not real-time)
- Not portable

### Detailed models: Metric-based



- □ Highly accurate
- Not full-system
- Complex, require specialized knowledge
- Not portable

[Contreras and Martonosi, ISLPED 2005] [Isci and Martonosi, MICRO 2003]

# High-level metrics (Mantis)



- □ How accurate?
- □ How portable?
- Tradeoff between model parameters/complexity and accuracy?

# **Power Modeling**

- Run <u>one-time</u> calibration scheme (possibly at vendor)
  - Stress individual components: CPU, memory, disk
  - Outputs: time-stamped performance metrics & AC power measurements
- Fit model parameters to calibration data
- Use model to predict power
  - Inputs: performance metrics at each time t
  - Output: estimation of AC power at each time t



### Models studied

 $\Box$  Constant power (the null model):  $P = C_0$ 

CPU utilization-based models

Input: CPU util. %

Equation

**Output:** Predicted power (system)

# CPU utilization-based models

Linear in CPU utilization

$$P = C_0 + C_1 U$$

Empirical power model

$$P = C_0 + C_1 u + C_2 u'$$

[Fan et al, ISCA 2007]

### CPU + disk utilization



- Disk util. %



**Output:** Predicted power (system)

 $P = C_0 + C_1 U_{CPU} + C_2 U_{disk}$ 

[Heath et al, PPoPP 2005]

### CPU + disk util. + performance ctrs



 $P = C_0 + C_1 U_{CPU} + C_2 U_{disk} + \sum_{i} C_i P_i$ 

[D. Economou, S. Rivoire, C. Kozyrakis, P. Ranganathan, MoBS 2006]

### CPU performance counters

- Configurable processor registers to count microarchitectural events
- Requires OS modification
- □ In this study:
  - Memory bus transactions
  - Unhalted CPU clock cycles
  - Instructions retired/ILP
  - Last-level cache references
  - Floating-point instructions

# **Evaluation methodology**

- Run calibration suite and develop models on a variety of machines
- Run benchmarks, collecting metrics and AC power
- Compare predicted power from metrics with measured AC power

# **Evaluation machines**

- CoolSort with 1 and 13 disks
  - Highest and lowest frequencies
- □ 2005-era AMD laptop
  - Highest and lowest frequencies
- 2005-era Itanium server
- 2008-era Xeon server with 32 GB FBDIMM
- Variety in component balance, processor, domain, dynamic range

# **Evaluation benchmarks**

- SPECcpu int and fp
  - Laptop: gcc and gromacs only
- SPECjbb
- Stream
- I/O-intensive programs
  - ClamAV
  - Nsort (CoolSort-13 only)
  - SPECweb (Itanium only)









### Best case for empirical CPU model (Xeon server)



### Best case for empirical CPU model (Xeon server)



### Best case for performance counters (Xeon server and CoolSort-13)



### Best case for performance counters (Xeon server and CoolSort-13)



### Best case for performance counters (Xeon server and CoolSort-13)



# Modeling conclusions

- Generic approach to power modeling yields accurate results
  - Simple models overall have < 10% error</p>
  - Same parameters across very different machines
  - More information  $\rightarrow$  better models
- Linear CPU util. model not enough for...
  - Machines and workloads that are not CPU-dominated
  - CPUs with shared resource bottlenecks
  - Aggressively power-optimized CPUs
  - …all of which reflect hardware trends.

### Future work

### Beyond CPU, memory, and disk

GPUs

Network (not a factor today)

Model complexity

Combine exponential CPU model w/ perfctrs?

Cooling?

### **Overall Summary**

Models and metrics needed to improve energy efficiency

### Metrics:

- JouleSort energy-efficiency benchmark specification
- Winning JouleSort machine

### Models:

- Simple, portable high-level modeling technique
- Trade-offs between accuracy and simplicity

### Acknowledgments

- **Advisor:** Christos Kozyrakis
- Mentor: Partha Ranganathan
- Committee: Kunle Olukotun & Dwight Nishimura
- Collaborators: Mehul Shah, Dimitris Economou, Justin Meza
- Assistance: Jacob Leverich, HP Labs, Charlie Orgish, Teresa Lynn
- **Defense food!** Jayanth and Amin
- Architecture grad students
- Grant Gavranovic, Kelley Rivoire, friends & family