A Comparison of High-Level Full-System Power Models

Suzanne Rivoire, *Sonoma State University*Partha Ranganathan, *HP Labs*Christos Kozyrakis, *Stanford University*

HotPower 2008

Talk Overview

- □ Power modeling goals and approaches
- Models compared
- Model generation and evaluation methodology
- Evaluation results

Who needs power models?

- □ Component and system designers
 - How do design decisions affect power?
- Users
 - How do my usage patterns affect power?
- Data center schedulers
 - How will workload distribution decisions affect power?

Power modeling goals

- ☐ Goal: Online, full-system power models
- Model requirements
 - Non-intrusive and low-overhead
 - Easy to develop and use
 - Fast enough for online use
 - Reasonably accurate (within 10%)
 - Inexpensive
 - Generic and portable

Power modeling approaches

- □ Detailed component models
 - Simulation-based
 - Hardware metric-based
- ☐ High-level full-system models

Power Modeling

- □ Run <u>one-time</u> calibration scheme (possibly at vendor)
 - Stress individual components: CPU, memory, disk
 - Outputs: time-stamped performance metrics & AC power measurements
- ☐ Fit model parameters to calibration data
- □ Use model to predict power
 - Inputs: performance metrics at each time t
 - Output: estimation of AC power at each time t

High-level models (Mantis)

Input:
Common util.
metrics

Equation
Output:
Predicted power (system)

- ☐ How accurate?
- □ How portable?
- ☐ Tradeoff between model parameters/complexity and accuracy?

Models studied

- \square Constant power (the null model): $P = C_0$
- ☐ CPU utilization-based models

Input:
CPU util. %

Equation
Output:
Predicted power (system)

CPU utilization-based models

☐ Linear in CPU utilization

$$P = C_0 + C_1 u$$

□ Empirical power model

$$P = C_0 + C_1 u + C_2 u^r$$

[Fan et al, ISCA 2007]

CPU + disk utilization

Input:

- CPU util. % - Disk util. %

Output:

Predicted power (system)

$$P = C_0 + C_1 u_{CPU} + C_2 u_{disk}$$

[Heath et al, PPoPP 2005]

CPU + disk util. + performance ctrs

Input:

- CPU util. % - Disk util. %
- Equation

Output:

Predicted power (system)

- CPU perfctrs

 $P = C_0 + C_1 u_{CPU} + C_2 u_{disk} + \sum_i C_i P_i$

[D. Economou, S. Rivoire, C. Kozyrakis, P. Ranganathan, MoBS 2006]

CPU performance counters

- ☐ Configurable processor registers to count microarchitectural events
- ☐ In this study:
 - Memory bus transactions
 - Unhalted CPU clock cycles
 - Instructions retired/ILP
 - Last-level cache references
 - Floating-point instructions

Evaluation methodology

- □ Run calibration suite and develop models on a variety of machines
- □ Run benchmarks, collecting metrics and AC power
- ☐ Compare predicted power from metrics with measured AC power

Evaluation benchmarks

- □ SPECcpu int and fp
 - Laptop: gcc and gromacs only
- □ SPECjbb
- □ Stream
- □ I/O-intensive programs
 - ClamAV
 - Nsort (mobile fileserver only)
 - SPECweb (Itanium only)

Evaluation machines

- ☐ Mobile fileserver with 1 and 13 disks
 - Highest and lowest frequencies
- ☐ 2005-era AMD laptop
 - Highest and lowest frequencies
- □ 2005-era Itanium server
- □ 2008-era Xeon server with 32 GB FBDIMM
- □ Variety in component balance, processor, domain, dynamic range

Overall mean % error

Overall mean % error

Overall mean % error

Overall mean % error

Best case for empirical CPU model

Best case for empirical CPU model

(Xeon server)

Best case for performance counters

(Xeon server and mobile fileserver-13)

Best case for performance counters

(Xeon server and mobile fileserver-13)

Best case for performance counters

(Xeon server and mobile fileserver-13)

Future work

- ☐ Beyond CPU, memory, and disk
 - GPUs
 - Network (not a factor today)
- Model complexity
 - Combine exponential CPU model w/ perfctrs?
 - Cooling fan power is cubic function of speed

Conclusions

- ☐ Generic approach to power modeling yields accurate results
 - Simple models overall have < 10% error
 - Same parameters across very different machines
 - More information → better models
- ☐ Linear CPU util. model not enough for...
 - Machines and workloads that are not CPU-dominated
 - CPUs with shared resource bottlenecks
 - Aggressively power-optimized CPUs
 - ...all of which reflect hardware trends.