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• circuit techniques such as disabling the clock signal
to a processor’s unused parts;

• architectural techniques such as replacing complex
uniprocessors with multiple simple cores; and

• support for multiple low-power states in processors,
memory, and disks.

At the system level, the latter approach requires poli-
cies to intelligently exploit these low-power states for
energy savings. Across multiple systems in a cluster or
data center, these policies can involve dynamically adapt-
ing workload placement or power provisioning to meet
specific energy or thermal goals.1

To facilitate these optimizations, we need metrics to
define energy efficiency, which will help designers com-
pare designs and identify promising energy-efficient tech-
nologies. We also need models to predict the effects of
dynamic power management policies, particularly over
many systems. Unlike the significant body of work on
power management and optimization, there has been
relatively little focus on metrics and models.

We address the challenges in defining metrics for energy
efficiency with a specific case study on JouleSort, which
provides a complete, full-system benchmark for energy
efficiency across a variety of system classes.2 The
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I n recent years, the power consumption of servers
and data centers has become a major concern.
According to the US Environmental Protection
Agency, enterprise power consumption in the US
doubled between 2000 and 2006 (www.energystar.

gov/ia/partners/prod_development/downloads/EPA_
Datacenter_Report_Congress_Final1.pdf), and will dou-
ble again in the next five years. Server power consump-
tion not only directly affects a data center’s electricity
costs, but also necessitates the purchase and operation
of cooling equipment, which can consume from 
one-half to one watt for every watt of server power 
consumption. 

All of these power-related costs can potentially exceed
the cost of purchasing hardware. Moreover, the envi-
ronmental impact of data center power consumption is
receiving increasing attention, as is the effect of escalat-
ing power densities on the ability to pack machines into
a data center.1

The two major and complementary ways to approach
this problem involve building energy efficiency into the
initial design of components and systems, and adaptively
managing the power consumption of systems or groups
of systems in response to changing conditions in the
workload or environment. Examples of the former
approach include
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sidebar describes different approaches to modeling power
consumption in components, systems, and data centers. 

ENERGY-EFFICIENCY METRICS
An ideal benchmark for energy efficiency would consist

of a universally relevant workload, a metric that balances
power and performance in a universally appropriate way,
and rules that provide impossible-to-circumvent, fair
comparisons. Since this benchmark is impossible, several
different approaches have addressed pieces of the energy-
efficiency evaluation problem, from chips to data centers.
Table 1 summarizes these approaches.

Each metric in Table 1 addresses a particular energy-
related problem, from minimizing power consumption

in embedded processors (EnergyBench) to evaluating the
efficiency of data center cooling and power provisioning
(Green Grid metrics). However, only JouleSort specifies
a workload, a metric to compare two systems, and rules
for running the benchmark.

At the processor level, Ricardo Gonzalez and Mark
Horowitz argued in 19963 that the energy-delay prod-
uct provides the appropriate metric for comparing two
designs. They observed that a chip’s performance and
power consumption are both related to the clock fre-
quency, with performance directly proportional to, and
power consumption increasing quadratically with,
clock frequency. Comparing processors based on
energy, which is the product of execution time and

Approaches to Power Modeling in Computer Systems
Power models are fundamental to energy-efficiency

research, whether the goal is to improve the compo-
nents’ and systems’ design or to efficiently use existing
hardware. Developers use these models offline to evalu-
ate proposed designs, and online in policies to exploit
component power modes within a system, or to effi-
ciently distribute work across several systems.

An ideal power model has several properties. First, it
must be accurate. It should also be portable across a
variety of existing and future hardware designs, and
applicable under a variety of workloads. Finally, it should
be cost-effective in its hardware and software require-
ments and execute swiftly.

Power models used in simulators of proposed hard-
ware trade speed and portability for increased accuracy,
relying on detailed knowledge of component architec-
ture and circuit technology. Wattch1 is a widely used
CPU power model that estimates the power costs of
accessing different parts of the processor and combines
this information with activity counts from a performance
simulator to yield power estimates. Similar models have
been proposed for other components, including mem-
ory, disks, and networking, as well as complete
systems.2,3 These simulators are highly accurate, but also
closely tied to specific systems and simulation infrastruc-
tures that are much slower than actual hardware.

Models used in online power-
management policies, for which
speed is a first-class constraint,
cannot rely on such detailed simu-
lation. Using real-time system
events instead of simulated activity
counts addresses this drawback.
Frank Bellosa proposed using
processor performance counter
registers to provide on-the-fly
power characterization of real sys-
tems.4 His simple and portable
model used the counts of instruc-
tions executed and memory
accesses to drive the selection of a
processor’s frequency states. More
detailed and processor-specific
performance-counter-based mod-
els have been developed to model
both power5 and thermal6 proper-
ties. Finally, since researchers devel-
oped performance counter options
with application profiling rather
than power estimation in mind,
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Figure A. Accuracy of the model created by Mantis9 for a low-power blade.The equation
shows the power predicted at a given time t as a function of CPU utilization, number of
memory and disk accesses, and number of network accesses sampled at that time. Each uti-
lization input u is given as a percentage of its maximum value.The average error of this
coarse-grained linear model is less than 10 percent for every benchmark—sufficient for
most scheduling optimizations.
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Joule” for networking benchmarks and “telemarks per
Joule” for telecommunications benchmarks.

The single-system level is the target of several recent
metrics and benchmarking efforts. Performance per watt
became a popular metric for servers once power became
an important design consideration. Performance is typ-
ically specified with either MIPS or the rating from peak
performance benchmarks like SPECint or TPC-C. Sun
Microsystems has proposed the SWaP (space, watts, and
performance) metric to include data center space effi-
ciency as well as power consumption.5

Two evolving standards in system-level energy efficiency
are the US government’s Energy Star certification guide-
lines for computers and the SPEC Power and Performance

power, would therefore motivate processor designers
to focus solely on lowering clock frequency at the
expense of performance. On the other hand, the
energy-delay product, which weighs power against the
square of execution time, would show the underlying
design’s energy efficiency rather than merely reflecting
the clock frequency.

In the embedded domain, the Embedded Micro-
processor Benchmark Consortium (EEMBC) has pro-
posed the EnergyBench4 processor benchmarks.
EnergyBench provides a standardized data acquisition
infrastructure for measuring processor power when run-
ning one of EEMBC’s existing performance benchmarks.
Benchmark scores are then reported as “netmarks per

Ismail Kadayif and colleagues proposed an interface
based on “energy counters” that would virtualize the
existing performance counters.7

Processor performance counters can be used to esti-
mate processor and memory power consumption, but
do not take other parts of the system, such as I/O, into
account. Some optimizations, such as data-center-level
optimizations that turn off unused machines, must
consider the full-system power. In this case, OS utiliza-
tion metrics can be used to model the base system
components quickly, portably, and with reasonable
accuracy. Taliver Heath and colleagues8 and Dimitris
Economou and colleagues9 build linear models based
on OS-reported utilization of each component. Both
approaches require an initial calibration phase, in
which developers connect the system to a power meter
and run microbenchmarks to stress each component.
They then fit the utilization data to the power measure-
ments to construct a model.

Figure A shows an example of one such model.9
Parthasarathy Ranganathan and Phil Leech used a similar
approach to predict both power and performance by
constructing lookup tables based on utilization.10 Finally,
researchers from Google found that an even simpler
model, based solely on OS-reported processor utiliza-
tion, proved sufficiently accurate to enable optimizations
over a large group of homogeneous machines.11

Optimizations for energy efficiency rely on accurate,
fast, cost-effective, and portable power models. While
many models have been developed to address individual
needs, creating systematic methods of generating widely
portable and highly accurate models remains an open
problem. Such methods could facilitate further innova-
tions in energy-efficient system design and management.
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exergy destroyed. Roughly speaking, exergy is the
energy available for doing useful work.8

Finally, the Green Grid, an industrial consortium that
includes most major hardware vendors, recently intro-
duced the data center efficiency metric.9 The Green Grid
proposal defines DCE as the percentage of total facility
power that goes to the “IT equipment”—primarily com-
pute, storage, and network. In the long term, rather than
using IT equipment power as a proxy for performance, the
Green Grid advocates data center performance efficiency,
or the useful work divided by the total facility power.

Each of these metrics is useful in evaluating energy
efficiency in a particular context, from embedded
processors to underutilized servers to entire data cen-
ters. However, researchers have not methodically
addressed energy-efficiency metrics for many important
computing domains. For example, there are no full-sys-
tem benchmarks that specify a workload, a metric to
compare two systems, and rules for running the bench-
mark. The recently proposed JouleSort benchmark
addresses this space.

JOULESORT BENCHMARK
We designed the JouleSort benchmark with several

goals in mind. First, the benchmark should evaluate the

committee’s upcoming benchmark. Energy Star is a 
designation given by the US government to highly energy-
efficient household products, and has recently been
expanded to include computers.6 For most system classes,
systems with idle, sleep, and standby power consumptions
below a certain threshold will receive the Energy Star rat-
ing. For workstations, however, the Energy Star rating
requires that the “typical” power—a weighted function
of the idle, sleep, and standby power consumptions—not
exceed 35 percent  of the “maximum power” (the power
consumed during the Linpack and SPECviewperf bench-
marks, plus a factor based on the number of installed hard
disks). Energy Star certification also requires that a sys-
tem’s power supply efficiency exceed 80 percent.

The SPEC power and performance benchmark
remains under development.7 The workload will be
server-side Java-based, and designed to exercise the sys-
tem at a variety of usage levels, since servers tend to be
underutilized in data center environments. The com-
mittee expects to release the specific workload and met-
ric of comparison in late 2007.

At the data center level, metrics have been proposed
to guide holistic optimizations. To optimize data center
cooling, Chandrakant Patel and others have advocated
a metric based on weighing performance against the

Table 1. Summary of energy efficiency benchmarks and metrics.

Benchmark Metric Level Domain Workload Comment   

Analysis tool PerformanceN per watt Any Any Unspecified Different balances of 
performance and power are 
important in different 
contexts. N = 0 represents 
power alone, and N = 2 
corresponds to the energy-
delay product.  

EnergyBench Throughput per Joule Processor Embedded EEMBC benchmarks   
SWaP Performance/(space ! watts) System(s) Enterprise Unspecified Addresses both space and 

power concerns  
Energy Star Certify if “typical” power is less System Enterprise Sleep, idle, and standby 
certification: than 35 percent of “maximum” power (typical); Linpack 
workstations power and SPECviewperf 

(maximum)   
Energy Star Certify if each mode is below a System Mobile, Sleep, idle, and standby 
certification: predefined threshold for that desktop, modes   
other systems system class small server 
SPEC Power and Not yet released System Enterprise Server-side Java under Expected late 2007 
Performance varying loads 
JouleSort Records sorted per Joule System Mobile, External sort Has three benchmark 

desktop, classes with different 
enterprise workload size

Green Grid DCE Percent of facility power that Data center Enterprise n/a   
reaches IT equipment 

Green Grid DCPE Work done/total facility power (W) Data center Enterprise Not yet determined   



power-performance tradeoff—that is, the
benchmark score should not reward high 
performance or low power alone. Two rea-
sonable metrics for the benchmark are thus
energy (the product of average power con-
sumption and execution time) and the
energy-delay product, which places more
emphasis on performance. 

We chose energy for two reasons. First, plenty
of performance benchmarks already exist, so
we wanted to be sure our benchmark empha-
sized power. Second, the tradeoff between per-
formance and power at the system level does
not display the straightforward quadratic rela-
tionship seen at the processor level, which
motivated use of the energy-delay metric. 

Further, the benchmark should evaluate a
system’s peak energy efficiency, which for today’s sys-
tems occurs at peak utilization. While peak utilization
offers a realistic scenario in some domains, data center
servers in particular are notoriously underutilized.
However, benchmarking at peak utilization is justified
for several reasons. First, peak utilization is simpler to
define and measure, and it makes the benchmark more
difficult to circumvent. Additionally, knowing the upper
bound on energy efficiency for a particular system is use-
ful. In enterprise environments, for example, this upper
bound provides a target for server consolidation.

Next, the benchmark should be balanced. It should
stress all core system components, and the metric should
incorporate the energy that all components use. It should
also be representative of important workloads and sim-
ple to implement and administer.

Finally, the benchmark should be inclusive, encom-
passing as many past, current, and future systems as pos-
sible. For inclusiveness, the benchmark must be
meaningful and measurable on as many system classes
as possible. The workload and metric should apply to a
wide range of technologies.

Benchmark workload
For our benchmark’s workload, we chose to use the

external sort from the sort benchmarks’ specification
(http://research.microsoft.com/research/barc/SortBench
mark/default.htm). External sort has been a benchmark
of interest in the database community since 1985, and
researchers have used it to understand the system-level
effectiveness of algorithmic and component improve-
ments and identify promising technology trends.
Previous sort benchmark winners have foreshadowed
the transition from supercomputers to commodity clus-
ters, and recently showed the promise of general-pur-
pose computation on graphics processing units (GPUs).10

The sort benchmarks currently have three active cat-
egories, as summarized in Table 2. PennySort is a price-
performance benchmark that measures the number of

records a system can sort for one penny, assuming a
three-year depreciation. MinuteSort and TerabyteSort
measure a system’s pure performance in sorting for a
fixed time of one minute and a fixed data set of one
Tbyte, respectively. JouleSort, to measure the power-
performance tradeoff, is thus a logical addition to the
sort benchmark repertoire. The original Datamation sort
benchmark compared the amount of time systems took
to sort 1 million records; it is now deprecated since this
task is trivial on modern systems.

The workload can be summarized as follows: Sort a
file consisting of randomly permuted 100-byte records
with 10-byte keys. The input file must be read from—
and the output file written to—nonvolatile storage. The
output file must be newly created rather than overwrit-
ing the input file, and all intermediate files that the sort
program uses must be deleted.

This workload meets our benchmark goals satisfac-
torily. It is balanced, stressing I/O, memory, the CPU,
the OS, and the file system. It is representative and 
inclusive; it resembles sequential, I/O-intensive data-
management workloads that are found on most plat-
forms, from cell phones processing multimedia data to
clusters performing large-scale parallel data analysis.
The Sort Benchmark’s longevity testifies to its enduring
applicability as technology changes.

Benchmark metric
Designing a metric that allows fair comparisons across

systems and avoids loopholes that obviate the benchmark
presents a major challenge in benchmark development.
For JouleSort, we seek to evaluate the power-performance
balance of different systems, giving power and perfor-
mance equal weight. We could have defined the JouleSort
benchmark score in three different ways:

• Set a fixed energy budget for the sort, and compare
systems based on the number of records sorted
within that budget.
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Table 2. Summary of sort benchmarks.10

Benchmark Description Status  

PennySort  Sort as many records as possible for one  Active
cent, assuming a 3-year depreciation.    

MinuteSort Sort as many records as possible in less Active
than a minute.  

TerabyteSort Sort a Tbyte of data (10 billion records) as  Active
quickly as possible.  

Datamation Sort 1 million records as quickly as  Deprecated 
possible. 

JouleSort Sort a fixed number of records (approx. Proposed
10 Gbytes, 100 Gbytes, 1 Tbyte) using as 
little energy as possible. 
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• Set a fixed time budget for the sort, and compare sys-
tems based on the number of records sorted and the
amount of energy consumed, expressed as records
sorted per Joule.

• Set a fixed workload size for the sort, and compare
systems based on the amount of energy consumed.

The fixed-energy budget and fixed workload both
have the drawback that a single fixed budget will not be
applicable to all classes of systems, necessitating multi-
ple benchmark classes and updates to the class defini-
tions as technology changes. The fixed-energy budget
has the further drawback of being difficult to bench-
mark. Since energy is the product of power and time, it
is affected by variations in both quantities. Measurement
error from power meters only compounds this problem.

By contrast, using a reasonably low fixed-time bud-
get and a metric of records sorted per Joule would avoid
this problem; however, two more serious issues elimi-
nate it from consideration. Figure 1 illustrates these,
showing the records sorted per Joule for our best-per-
forming system while running different workload sizes.
From the left, the smallest data set sizes take only a few
seconds and thus poorly amortize the startup overhead. 

As data sets grow larger, this overhead amortizes better,
while efficiency increases, up to 15 million records. This is
the largest data set that fits completely in memory. For
larger sizes, the system must temporarily write data to disk,
doubling the amount of I/O and decreasing performance
dramatically. After this transition, energy efficiency stays
relatively constant, with a slow trend downward.

The first problem, then, is the disincen-
tive to continue sorting beyond the largest
one-pass sort. With a budget of one
minute, this particular machine would
achieve its best records-sorted-per-Joule
rating if it sorted 15 million records,
which takes 10 seconds, and went into a
low-power sleep mode for the remaining
50 seconds. In the extreme case, a system
optimized for this benchmark could spend
most of the benchmark’s duration in sleep
mode—thus voiding the goal of measur-
ing a utilized system’s efficiency.

The second problem is the (N lg N)
algorithmic complexity of sort, which
causes the downward trend in efficiency
for large data sets. While constant factors
initially obscure this complexity, once the
sort becomes CPU-bound, the number of
records sorted per Joule begins to decrease
because the execution time now increases
superlinearly with the number of records.
In light of these problems with a fixed time
budget and fixed energy budget, we set-
tled on using a fixed input size. This deci-

sion necessitates multiple benchmark classes, similar to
the TPC-H benchmark, since different workload sizes
are appropriate to different system classes. The JouleSort
classes are 100 million records (about 10 Gbytes), 1 bil-
lion records (about 100 Gbytes), and 10 billion records
(about 1 Tbyte). The metric of comparison then becomes
the minimum energy or records sorted per Joule, which
are equivalent for a fixed workload size.

We prefer the latter metric because it highlights effi-
ciency more clearly and allows rough comparisons across
different benchmark classes, with the caveats we have
described. We do anticipate that the benchmark classes
will change as systems become more capable. However,
since sort performance is improving more slowly than
Moore’s law, we expect the current classes to be relevant
for at least five years. Therefore, given our criteria, the
fixed input size offers the most reasonable option.

Energy measurement
While we can borrow many of the benchmark rules

from the existing sort benchmarks, energy measurement
requires additional guidelines. The most important areas
to consider are the boundaries of the system to be mea-
sured, constraints on the ambient environment, and
acceptable methods of measuring power consumption.

The energy consumed to power the physical system
executing the sort is measured from the wall outlet.
This approach accounts for power supply inefficien-
cies in converting from AC to DC power, which can be
significant.1 If a component remains unused in the sort
and cannot be physically removed from the system,
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Figure 1. Problems with using a fixed time budget and a metric of records sorted
per Joule.The dramatic drop in efficiency at the transition from one-pass to
two-pass sorts (here, at 15 million records) creates an incentive to sleep for
some, or even most, of the time budget.The (N lg N) complexity of sort causes
the slow drop-off in efficiency for large data sets at the rightmost part of the
graph and creates a similar problem.



we include its power consumption in the
measurement.

The benchmark accounts for the energy
consumed by elements of the cooling infra-
structure, such as fans, that physically con-
nect to the hardware. While air conditioners,
blowers, and other cooling devices consume
significant amounts of energy in data cen-
ters, it would be unreasonable to include
them for all but the largest sorting systems.
We do specify that the ambient temperature
at the system’s inlets be maintained at
between 20° to 25° C—typical for data cen-
ter environments.

Finally, energy consumption should be mea-
sured as the product of the wall clock time used for the
sort and the average power over the sort’s execution. The
execution time will be measured as the existing sort
benchmarks specify. The easiest way to measure the
power is to plug the system into a digital power meter,
which then plugs into the wall; the SPEC Power com-
mittee and the Energy Star guidelines have jointly pro-
posed minimum power meter requirements,6,7 which we
adopt for JouleSort as well.  Finally, we define two bench-
mark categories: Daytona, for commercially supported
hardware and software, and Indy, which is unconstrained.
Table 3 summarizes the final benchmark definition.

JOULESORT BENCHMARK RESULTS
Using this benchmark, we evaluated

energy efficiency for a variety of computer
systems. We first estimated the energy effi-
ciency of previous Sort Benchmark win-
ners and then experimentally evaluated
different systems with the JouleSort
benchmark.

Energy efficiency of previous 
sort benchmark winners

First, to understand historical trends in
energy efficiency, we retrospectively
applied our benchmark to previous sort
benchmark winners over the past decade,
computing their scores in records sorted
per Joule. Since there are no power mea-
surements for these systems, we estimated
the power consumption based on the
benchmark winners’ posted reports on
the Sort Benchmark Web site, which
include both hardware configuration
information and performance data. The
estimation methodology relies on the fact
that these historical winners have used
desktop- and server-class components
that should be running at or near peak
power for most of the sort. Therefore, we

can approximate component power consumption as
constant over the sort’s length. 

We validated our estimation methodology on single-
node desktop- and server-class systems, for which 
the estimates were accurate within 5 to 25 percent—
sufficiently accurate to draw high-level conclusions.

The historical data, shown in Figure 2, supports a few
observations. 

First, the PennySort winners tend to be the most
energy-efficient systems, for the simple reason that
PennySort is the only benchmark to weigh performance
against a resource constraint. While low cost and low
power consumption do not always correlate, both 
metrics tend to encourage minimizing the number of
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Table 3. Summary of JouleSort benchmark definitions.

Workload External sort  

Benchmark classes 108 records (10 Gbytes), 109 records (100 Gbytes), 
1010 records (1 Tbyte) 

Benchmark categories Daytona = commercially supported hardware and software
Indy = “no holds barred” implementations  

Metric Energy to sort a fixed number of records (records sorted 
per Joule)  

Energy measurement Measure power at the wall, subject to EPA power meter 
guidelines  

Environment Maintain ambient temperature of 20°-25° C  
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Figure 2. Estimated energy efficiency, in records sorted per Joule, of historical
Sort Benchmark winners.The Daytona category is for commercially supported
sorts, while the Indy category has no such restrictions.The pink arrow shows the
energy efficiency trend for cost-efficient sorts, which is improving at a rate of 25
percent per year.The blue arrow shows the trend for performance-oriented
sorts, whose energy efficiency is improving at 13 percent per year. Both of 
these rates fall well below the rates of improvement in performance and cost
performance.
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components and using lower-performance components
within a class. 

Second, comparing this graph to the published per-
formance records shows that the energy-efficiency scores
of sort benchmark winners have not improved at nearly
the same rate as performance or price-performance
scores. The PennySort winners have improved in both
performance and cost efficiency at rates greater than 50
percent per year. Their energy efficiency, on the other
hand, has improved by just 25 percent per year, most of
which came in the past two years. 

The winners of the performance sorts (MinuteSort,
TerabyteSort, and Datamation) have improved their 
performance by 38 percent per year, but have improved
energy efficiency by only 13 percent per year. It remains
unclear whether these sort benchmark contest winners
were the most energy-efficient systems of their time,
which suggests the need for a benchmark to track energy
efficiency trends.

Current-system and custom-configuration
energy efficiency

We ran the JouleSort benchmark on a variety of sys-
tems, including off-the-shelf machines representing
major system classes, as well as specialized sorting sys-
tems we created from commodity components. Table 4
summarizes these systems. Since we focus chiefly on
comparing hardware configurations, we use Ordinal
Technologies’ NSort software for all our experiments.

The commodity machines span several classes of sys-
tems: a laptop, low-power blade, standard server, and
fileserver. In all systems but the fileserver, the CPU is
underutilized in the sort because I/O is the bottleneck;
CPU and I/O utilizations balance in the file server. We
give two measurements for the blade because the wall

power measures the entire enclosure,
which is designed to deliver power to 15
blades and is thus both overprovisioned
and inefficient at this low load. We there-
fore include both the wall power of the
enclosure—blade-wall—and a more real-
istic calculation of the power consump-
tion for the blade itself, plus a
proportionate share of the enclosure
overhead, which we call blade-amortized.

The laptop and the fileserver proved to
be the two most efficient “off-the-shelf”
systems by far—both have energy effi-
ciency similar to the most efficient his-
torical system. The file server’s high
energy efficiency is not surprising because
the CPU and I/O both operate at peak
utilization, which corresponds to peak
energy efficiency for today’s equipment.
The laptop, however, shows high energy
efficiency even though its CPU is drasti-

cally underutilized. These results suggest that a bench-
mark-winning JouleSort machine could be constructed
by creating a balanced sorting machine out of mobile-
class components.

Based on these insights, we identified two approaches
to custom-assembled machines. The first builds a
machine from mobile-class components and attempts
to maximize performance. The second tries to minimize
power while still designing a machine with reasonable
performance. Both approaches lead to energy efficiencies
more than 2.5 times greater than in previous systems.

The former approach led to the design of the CoolSort
machine. CoolSort uses a high-end mobile CPU con-
nected to 13 SATA laptop disks over two PCI-Express
interfaces. The laptop disks use less than one-fifth of the
power of server-class disks, while providing about one-
half the bandwidth. At 13 disks, the CPU is fully utilized
during the input pass of the sort, and the motherboard
and disk controllers cannot provide any additional I/O
bandwidth. In the 10-Gbyte and 100-Gbyte categories,
CoolSort’s scores of approximately 11,500 records
sorted per Joule are more than three times better than
those of any previously measured or estimated systems.

Since these notebook-class components have proven
more energy efficient than their desktop- or server-class
counterparts, it makes sense to ask whether a system with
even lower-power components could be more energy 
efficient than CoolSort. We examined three embedded-
class systems: a Gumstix device; a Soekris machine, typ-
ically found in routers and networking equipment; and
a Via picoITX-based machine, typically used for embed-
ded multimedia applications. Figure 3 shows the
JouleSort results of all our measured systems.

Vendors use the smallest and lowest power of these
systems, the Gumstix, in a variety of embedded devices.

Table 4. Systems for which the JouleSort rating was experimentally measured.

Name Description  

Laptop A modern laptop with an Intel Core 2 Duo processor and 3 Gbytes 
of RAM  

Blade-wall A single low-power blade plus the full wall power of its enclosure 
(designed for 16 blades)  

Blade-amortized A single low-power blade plus its proportionate share of the 
enclosure power  

Standard server A standard server with Intel Xeon processor, 2 Gbytes of RAM, 
and 2 hard disks  

Fileserver A fileserver with 2 disk trays containing 6 disks per tray  
CoolSort A desktop with a high-end mobile processor, 2 Gbytes of RAM, 

and 13 SATA laptop disks  
Gumstix An ultra-low-power system used in embedded devices  
Soekris A board typically used for networking applications  
VIA-laptop A VIA picoITX multimedia machine with laptop hard disks  
VIA-flash A VIA picoITX multimedia machine with flash drives  



Our version uses a 600-MHz ARM
processor, 128 Mbytes of memory, and an
8-Gbyte CompactFlash card. Its power
consumption is a mere 2 W, but the I/O
bandwidth is low; a 100-Mbyte in-mem-
ory sort takes 137 seconds, sorting 3,650
records per Joule at a bandwidth of 730
Kbps. For a 2-pass, 1-Gbyte sort, the
energy efficiency would probably drop to
about 1,820 records per Joule.

Moving up in power and performance,
the Soekris board we used, designed for
networking equipment, contains a 266-
MHz AMD Geode processor, 256 Mbytes
of memory, and an 8-Gbyte CompactFlash
card. The power used during sort is 6 W,
three times that of the Gumstix, but the
sort bandwidth is a much higher 3.7 Mbps,
yielding 5,945 records sorted per Joule for
a 1-Gbyte sort. We determined that the I/O
interface caused the bottleneck, not the
processor or I/O device itself.

The final system, the Via picoITX, has a 1-GHz
processor and 1 Gbyte of DDR2 memory. We tried both
laptop disks and flash as I/O devices; the flash used less
power and provided higher bandwidth. For a 1-Gbyte
sort, the flash-based version consumed 15 W and sorted
10,548 records per Joule—a number close to that of
CoolSort’s two-pass sorts. Although laptop disks are
theoretically faster, the limitations of the board allowed
for fewer laptop disks than flash disks, and thus the flash
configuration gave more total I/O bandwidth.

The CoolSort and VIA machines improve upon the
previous year’s efficiency by more than 250 percent, a
marked departure from the 12 to 25 percent yearly
improvement rates over the past decade. Thus, creating
benchmarks helps to recognize and drive improvements
in energy efficiency.

INSIGHTS AND FUTURE WORK 
The highest-scoring JouleSort machines provide sev-

eral insights into system design for energy efficiency. In
the CoolSort machine, we chose components for their
power-performance tradeoffs and connected them with
high-performance interfaces. While CoolSort’s mobile
processor combined with 13 laptop disks offers an
extreme example, it does highlight the promise of
designing reasonably well-performing servers from
mobile components. On the other hand, the lower-
power machines suffered because of the limited perfor-
mance of their I/O interfaces, rather than the flash
devices or CPU. Integration of flash memory closer to
the CPU could create more energy-efficient systems.

Second, JouleSort continues the Sort Benchmark’s tra-
dition of identifying promising new technologies. The VIA
system demonstrates the energy efficiency advantages of

flash storage over traditional disks. GPUTeraSort’s suc-
cess among the historical sort benchmark winners shows
that the high performance of GPUs comes at a relatively
small energy cost, although it is unclear whether this will
continue to hold as GPUs grow ever more power hungry.
Finally, because sort is a highly parallelizable algorithm, we
speculate that multicores will be excellent processors in
energy-efficient sorting systems.

Although JouleSort addresses a computer system’s
energy efficiency, energy is just one piece of the system’s
total cost of ownership (TCO). From the system pur-
chaser’s viewpoint, a TCO-Sort would be the most desir-
able sort benchmark; however, the TCO components
vary widely from user to user. Combining JouleSort and
PennySort to benchmark the costs of purchasing and
powering a system is a possible first step. For the high-
efficiency machines we studied, the VIA achieves a
JouleSort score comparable to CoolSort, at a much
lower price: $1,158 versus $3,032. This result highlights
the potential of flash as a cost-effective technology for
achieving high energy efficiency.

An emerging area of concern is the scaledown effi-
ciency of components and systems—that is, their ability
to reduce power consumption in response to low uti-
lization.11 Traditionally, components have consumed
well over half their peak power, even when underuti-
lized or idle. Manufacturers are starting to address this
inefficiency. JouleSort captures scaledown efficiency to
a small extent, since CPU and I/O will not be perfectly
balanced during both sort phases, but it does not nec-
essarily assess efficiency at low utilization.

Finally, JouleSort can be extended to include metrics of
importance in the data center. The benchmark’s current
version does not account for losses in power delivery at
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Figure 3. Measured JouleSort scores of commodity and custom machines.The
commodity machines, marked with dashes, performed less well than the
custom systems.
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the data center or rack level. An appropriate benchmark
in that setting might be an Exergy JouleSort where the
metric of interest is records sorted per Joule of exergy8

expended.

A s concerns about enterprise power consumption
continue to increase, we need metrics that assess
and improve energy efficiency. The JouleSort

benchmark can help assess improvements in end-to-end,
system-level energy efficiency. This addition to the fam-
ily of sort benchmarks provides a simple and holistic
way to chart trends and identify promising new tech-
nologies. The most energy-efficient sorting systems use
a variety of emerging technologies, including low-power
mobile components, and flash-based storage. ■
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