JouleSort: A Balanced Energy-Efficiency Benchmark

Suzanne Rivoire (Stanford), Mehul Shah (HP Labs), Partha Ranganathan (HP Labs), Christos Kozyrakis (Stanford)

Energy Use is Important

(1 of 2)

- From data centers to mobile devices
- Data center: power and cooling

Energy Use is Important

(2 of 2)

- Data center: power and cooling
 - Implications on reliability, density, and scalability
 - Pollution 4M tons CO₂ [C. Patel et al., 2006]
 - Load on utilities
- Desktops: electricity costs
- Mobile devices: battery life affects usability

Benchmarks

Inspire energy-efficiency improvements

- Current efforts
 - E.g., MIPS/Watt, SPECint/Watt, SWaP, ...
 - E.g., Ongoing activity in Green Grid, EPA, SPEC Power, ...
- But often ...
 - Focused on specific component
 - Under-specified or "under construction"
 - Application specific: realistic but complex

No simple holistic benchmark

JouleSort: Simple and Holistic

- Primarily meant for system designers
 - Simple: easy to setup and experiment
 - Evaluate disruptive technology, gain insights
 - Technology bellwether: anticipate trends

- Measure whole-system energy-efficiency
- Workload, metric, and guidelines
- Based on external sort

Our Contributions

I: JouleSort: Holistic energy-efficiency benchmark

- Design: workload, metrics, guidelines
- Rationale and pitfalls

II: Energy-efficient system design: 2007 "winner"

- 3.5X better than previous estimated best
- Insights on future designs

Why External Sort?

(1 of 2)

- Simple, balanced workload
 - -Exercises all core components
 - -CPU, memory, disk, I/O, OS, filesystem
- Applies to systems small and large
 - -PDAs, Laptops, Desktop, Supercomputers
- Representative of sequential I/O tasks
 - Data warehousing, Business analytics, etc.

Why External Sort?

(2 of 2)

- Hard to cheat
 - Measure system while doing useful work
- Technology trend bellwether
 - –E.g. supercomputers to clusters, GPU?

Holistic measure of improvement

Existing Sort Benchmarks

- Pure performance
 - MinuteSort: How much can you sort in 1 min ?
 - TeraByte: How fast can you sort 1 TB?
- Cost efficient
 - PennySort: How much can you sort for 1 penny?
 - Performance-Price: Maximum SRecs/\$ in 1 min ?

Initial Our ^ JouleSort Proposal

- Workload
 - Sort 100-byte records with 10-byte keys
 - From file on non-volatile store to file on non-volatile store
- Metric?
 - Energy (Joules) = Power (Watts)* Time (secs)
 - Fixed time budget (like MinuteSort, Price-Perf Sort)
 - 1 minute budget
 - Measure records sorted and Joules
 - Winner: max SortedRecs/Joule?

- Biased toward systems that sort fewer records
- Better efficiency with 1-pass sort and sleep
 - System not doing useful work

Revised Our ^ JouleSort Proposal

- Fixed input size (like TeraByte)
 - Three classes: 10GB, 100GB, 1TB
 - Winner: minimum energy
 - Report SortedRecs/Joule (like MPG for cars)
 - Inter-class comparisons imperfect
 - Adjust classes as technology improves
- Categories
 - Daytona "street-car": sold and supported
 - Indy "no-holds-barred"

Road Map

- I: JouleSort: Holistic energy-efficiency benchmark
 - Design: workload, metrics, guidelines
 - Rationale and pitfalls
- II: Energy-efficient system design: 2007 "winner"
 - 3.5X better than previous estimated best
 - Insights on future designs

Historical Analysis (Estimate)

Historical Analysis (

Target: GPUTeraSort

~3200 SortedRecs/Joule

A Look at Existing Systems

	# Disks	CPU %	Input Size	Power (Watt)	SortedRecs per Joule
GPUTeraSort (estimated)	9	n/a	59GB	290	~3200
Low-power Blade	1	11%	5GB	90	~300
Low-end server	2	26%	10GB	140	~1200
PL360G3 Laptop	1	1%	10GB	22	~3400
Sort-balanced Fileserver	12	90%+	10GB	406	~3800

A Look at Existing Systems

	# Disks	CPU %	Input Size	Power (Watt)	SortedRecs per Joule		
GPUTeraSort	9	n/a	500D 2000				
(estimated)			DL360G5 server: 180W				
Low-power Blade	1	11%	Disk trays + disks: 226W				
Low-end	2	26%	10G.		~1200		
server							
PL36PG3	Active Idle: 370W 2 ~3400						
Laptop							
Sort-balanced	12	90%+	10GB	406	~3800		
Fileserver							

Optimizing for Energy-Efficiency: Step 1

Lower power components w/o equal perf. loss

Fileserver

Sort BW: 313 MB/s 65W (peak)

75% perf

→
52% power

Sort BW: 236 MB/s 34W (peak)

Optimizing for Energy-Efficiency: Step 1

Lower power components w/o equal perf. loss

Fileserver

Our winner

Seagate Barracuda Seq. BW: 80MB/s 13W

50% perf

15% power

Hitachi Travelstar Seq. BW: 40MB/s 2W

Optimizing for Energy Efficiency: Step 2

- Maximize performance
 - Balanced sort: enough disks to fully utilize CPU
 - Disks running near peak BW

Winner 100GB Category

- 11300 SortedRecs/Joule
 - -3.5x better than GPUTeraSort
 - -Average Power: 100W
 - -Ordinal Technology's NSort (thanks Chris Nyberg)

Winner 100GB Category

Asus motherboard:

Mobile CPU + 2 PCI-e slots

13 Hitachi TravelStar 160GB

RocketRAID Disk Controllers

Detailed SW/HW sensitivity experiments in paper

Insights for Future Designs

- All components matter
 - CPU, Disks, Memory, ...
 - Low hanging fruit: use low-power HW
- Current technology
 - Limited dynamic range
 - For fixed HW: peak efficiency = peak performance
- Want "scale-down efficiency"
 - 1TB → 100GB and give best of both

Other Issues

- Benchmark design
 - Data-center cooling and control
 - Display power, GPUs, etc.
 - Total cost of ownership
- System design
 - Flash is becoming practical
 - Cheaper, faster, and lower power

Conclusion

- Energy-use is important
 - From data centers to handhelds
- JouleSort
 - Simple, holistic energy-efficiency benchmark
- Built energy-efficient sorting system
 - 3.5x better than 2006 estimated winner (GPUTeraSort)
 - Insights: low-power HW, limited dynamic range
- Part of Sort Benchmark suite
 - Entries welcome for 2008
 - http://joulesort.stanford.edu

