Vector Lane Threading

S. Rivoire, R. Schultz, T. Okuda, C. Kozyrakis

Computer Systems Laboratory

Stanford University

Motivation

1 Vector processors excel at data-level parallelism (DLP)

J What happens to program phases with little or no DLP?

U Vector Lane Threading (VLT)
* Leverage idle DLP resources to exploit thread-level parallelism (TLP)

* 1.4-2.3x speedup on already optimized code

* Small increase in system cost

U VLT increases the applicability of vector processors

* Efficient for both regular & 1rregular parallelism

ICPP, August 2006 2

Outline

] Motivation

[Vector processor background
e (Generic vector microarchitecture

* Vector processors and DLP

U Vector lane threading (VLT)
U VLT evaluation

1 Conclusions

ICPP, August 2006

Vector Microarchitecture Overview

Vector Unit

1 1

L2 Cache / Memory Interface

ICPP, August 2006

Vector Microarchitecture Overview

Vector Unit

Scalar Processor

L2 Cache / Memory Interface

ICPP, August 2006

Vector Microarchitecture Overview

Vector Control Logic
!
v
VRF
FUs LSU| [FUs

1

L2 Cache / Memory Interface

ICPP, August 2006

Vector Efficiency with High DLP

‘—O—mxm —-sage ‘

-/

1 2 4 8

8
fori=1toN ; | /
forj=1toN o | %’4‘—

fork=1to N T,
CI[i,j] = C[i,j]+A[i,k]*C[k,j] 2 ;

)

;]
0

Vector Lanes

L Best case for vector processors: long vectors & regular memory patterns
O Lanes execute data-parallel operations very efficiently
* Low instruction issue rate, simple control, compact code, power efficiency

O Simple model for scalable performance

* Current vector processors have 4 to 16 lanes

ICPP, August 2006 7

Vector Efficiency with Low DLP

Speedup
o =~ N W » OO O N o

—

—o———o

mpenc
trfd
= multprec
=& bt
—t+— radix
——ocean
=&= barnes

1

2

Vector Lanes

4

8

1 Low DLP = underutilized lanes & memory ports

e Short vectors
* No vectors

* Vector length vs. stride in nested loops

1 Can we improve efficiency for low-DLP cases?

ICPP, August 2006

Outline

] Motivation

U Vector processor background

U Vector lane threading (VLT)

* Overview
* Possible configurations

* Implementation
U VLT Evaluation

1 Conclusions

ICPP, August 2006

VLT Basics

(] Idea: use idle lanes to exploit thread-level parallelism (TLP)

4 Sources of TLP
* Quter loops in loop nests
* Non-vectorizable loops

e Task-level parallelism

O VLT benefits
* Does not harm high-DLP performance
* Higher utilization for DLP resources

* Vector unit can be shared between multiple threads

" From SMT or CMP scalar processors

ICPP, August 2006

10

VLT Configurations: Single Vector Thread

O Original configuration for long vector lengths (high DLP)

* 1 thread running vector instructions on 8 lanes

Vector Lanes

LO

L1

L2

L3

L4

LS

L6

L7

ICPP, August 2006

11

VLT Configurations: 2 Vector Threads

L Medium vector length configuration
* Two threads, each running vector instructions on 4 lanes

* Threads may be controlled by SMT or CMP scalar processor (more later)

Vector Lanes

TO,
LO

TO,
L1

TO,
L2

TO,
L3

ICPP, August 2006

T,
LO

T,
L1

T,
L2

T,
L3

12

VLT Configurations: 4 Vector Threads

L Short vector length configuration
* Four threads, each running vector instructions on 2 lanes

* Threads may be controlled by SMT or CMP scalar processor (more later)

Vector Lanes

TO,
LO

TO,
L1

T,
LO

T,
L1

T2,
LO

T2,
L1

T3,
LO

T3,
L1

ICPP, August 2006

13

VLT Configurations: Pure Scalar Threads

L Scalar (no-vector) configuration
* Eight threads, each running scalar instructions on 1 lane

* Each lane operates as a simple processor

Vector Lanes

TO,
LO

T,
LO

T2,
LO

T3,
LO

T4,
LO

TS,
LO

T6,
LO

T7,
LO

ICPP, August 2006

14

VLT vs. SMT

 VLT: exploit TLP on idle DLP resources

e Different threads on different vector lanes

e FEach thread uses all functional units within a lane

d SMT: exploit TLP on idle ILP resources

e Different threads on different functional units

* In a vector processor, each thread uses all lanes

 Notes
* VLT and SMT are orthogonal & can be combined

* VLT is more important for a vector processor
® Several apps run efficiently on a 16-lane vector processor

" How many apps run efficiently on a 16-way issue processor?

ICPP, August 2006

15

VLT Implementation

Vector Control Logic
!
v
VRF
FUs LSU| [FUs

1

L2 Cache / Memory Interface

ICPP, August 2006

16

VLT Implementation: Execution Resources

O Functional units = already available

O Vector registers for additional threads = already available

* VRF slice in each lane can store the register elements for each thread
* Note that each thread uses shorter vectors

L Memory ports = already available

* Necessary to support indexed and strided patterns even with long vectors

Vector Control Logic

|

VRF VRF

LSU| FUs LSU| [FUs

ICPP, August 2006 17

VLT Implementation: Vector Instr. Bandwidth

1 Vector instruction issue bandwidth

* Must issue vector instructions separately for each thread

* Multiplex single vector control block, or replicate the block

* Multiplexing is sufficient as each vector instruction takes multiple cycles
O Instruction set

* Minor addition to specify configuration (number of threads)

Vector Control Logic

|

VRF VRF

LSU| FUs LSU| [FUs

ICPP, August 2006 18

VLT Implementation: Scalar Instr. Bandwidth

ICPP, August 2006

Scalar Processor

ROB

L Must process scalar instructions for
multiple vector threads

O Design alternatives

* Attach vector unit to SMT processor

* Attach vector unit to CMP processor

® Multiple cores share one vector unit

Combination of the above (CMT)

* Heterogeneous CMP

" One complex & multiple simpler cores
share a vector unit

U O Trade-off

Cost vs. utilization of vector unit

19

VLT Implementation: Scalar Threads on Vector Unit

 Challenge: each lane requires 1-2 instructions per clock cycle
* Much higher instruction bandwidth than with vector threads

* No point in using multiple scalar cores to feed the lanes

] Design approach

* Introduce a small instruction cache in each lane
" Single-ported, 1 to 4 Kbytes is sufficient
" Feeds the functional units with instructions in tight loops
* (Cache misses in lanes handled by scalar core
® Scalar core instruction cache acts as a L2 instruction cache

" Low miss penalty

ICPP, August 2006 20

Outline

] Motivation
U Vector processor background
1 Vector lane threading (VLT)

J VLT Evaluation
* Methodology
* Vector thread results

e Scalar thread results

1 Conclusions

ICPP, August 2006

21

Methodology

O Simulated processor
* Based on Cray X1 ISA
* Scalar unit: 4-way OOO superscalar
* Vector registers: 32 vector registers, max. vector length of 64
* Vector execution resources: 8 lanes, 3 functional units per lane

 Software environment
* All code compiled with production Cray C and Fortran compilers

* Highest level of vector optimizations enabled
" All speedups reported are in addition to vectorization

* Used ANL macros for multithreading

" Could also use OpenMP or other mulithreading approaches

O Further details in the paper

ICPP, August 2006 22

Benchmarks

 Nine benchmarks, three categories
* High DLP (long vectors), medium DLP (short vectors), no DLP

O Examples
* High DLP: matrix multiply
" 96% vectorized, average vector length of 64 (maximum)

* Medium DLP: trfd (two electron integral transformation)

" 76% vectorized, average vector length of 11.2

* No DLP: ocean (eddy currents in ocean basin)

® 0% vectorized

J Note

* Benchmarks include some sequential portions with no DLP, no TLP

ICPP, August 2006 23

Vector Thread Evaluation

O Base BVLT -2 threads O VLT -4 threads

Speedup

mpenc trfd multprec bt

1 Results for medium-DLP benchmarks on best scalar-core configuration
O Up to 2.3x performance improvement

* On top of vectorization for these applications
 Limitations

* Saturation of vector resources

* (ache effects, thread overhead, purely sequential portions

ICPP, August 2006 24

VLT Cost Evaluation

O Default configuration: SU (4-way OOO) + VU

d SMT scalar unit
* (.8% area increase for 2 VLT threads
* 1.3% area increase for 4 VLT threads
1 CMP scalar unit (4-way OOO cores)
* 12.3% area increase for 2 VLT threads
* 26.9% area increase for 4 VLT threads
(d CMT scalar unit (4-way OOO cores, 2 threads/core)
* 13.8% area increase for 4 VLT threads
1 Heterogeneous CMP scalar unit (CMP-h)
* 3.49% area increase for 2 VLT threads
* 10.1% area increase for 4 VLT threads

ICPP, August 2006

25

VLT Design Space Evaluation

B V2-SMT B V2-CMP [JV4-SMT (0 V4-CMT B V4-CMP @ V4-CMP-h

0.0

mpenc trfd multprec bt

0 V4-CMT equal performance to V4-CMP

* At lower area increase (13.8% vs. 26.9%)

* Two 4-way OOO processors can saturate an 8-lane vector unit
O V4-SMT outperforms V4-CMP-h

* V4-CMP-h configuration suffers thread imbalance

ICPP, August 2006

26

Scalar Thread Evaluation

@ Scalar CMP B VLT

2.5

2.0

2.0

Speedup

0.5 1

0.0
radix ocean barnes

O 8-lane VLT operates like a 8-way CMP with very simple cores
* No out-of-order execution, wide issues, branch prediction, etc
O Up to 2x compared to CMP (4-way cores with 2 threads/core)

* But performance may vary due to sequential code performance

ICPP, August 2006 27

Conclusions

O Vector Lane Threading (VLT)
* Turn underutilized DLP resources (lanes) into TLP resources
* Multiple scalar processors share a vector unit

* Vector unit used as a CMP with very simple cores

 Results
* Up to 2.3x performance for applications with short vectors
* Up to 2.0x performance for applications with no vectors

* (Cost-effective implementation alternatives

 Overall, VLT improves the applicability of vector processors
* Good efficiency with both high DLP and low DLP

ICPP, August 2006 28

Acknowledgments

d Cray
e XI compiler access
* Research funding through DARPA HPCS

 Stanford Graduate Fellowship

 National Science Foundation Fellowships

1 Stanford Computer Forum

ICPP, August 2006

29

