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Motivation

1 Vector processors excel at data-level parallelism (DLP)

J What happens to program phases with little or no DLP?

U Vector Lane Threading (VLT)
* Leverage idle DLP resources to exploit thread-level parallelism (TLP)

* 1.4-2.3x speedup on already optimized code

* Small increase in system cost

U VLT increases the applicability of vector processors

* Efficient for both regular & 1rregular parallelism
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Vector Microarchitecture Overview
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Vector Microarchitecture Overview
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Vector Efficiency with High DLP
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Vector Lanes

L Best case for vector processors: long vectors & regular memory patterns
O Lanes execute data-parallel operations very efficiently
* Low instruction issue rate, simple control, compact code, power efficiency

O Simple model for scalable performance

* Current vector processors have 4 to 16 lanes
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Vector Efficiency with Low DLP
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Vector Lanes
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1 Low DLP = underutilized lanes & memory ports

e Short vectors
* No vectors

* Vector length vs. stride in nested loops

1 Can we improve efficiency for low-DLP cases?
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VLT Basics

(] Idea: use idle lanes to exploit thread-level parallelism (TLP)

4 Sources of TLP
* Quter loops in loop nests
* Non-vectorizable loops

e Task-level parallelism

O VLT benefits
* Does not harm high-DLP performance
* Higher utilization for DLP resources

* Vector unit can be shared between multiple threads

" From SMT or CMP scalar processors
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VLT Configurations: Single Vector Thread

O Original configuration for long vector lengths (high DLP)

* 1 thread running vector instructions on 8 lanes
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VLT Configurations: 2 Vector Threads

L Medium vector length configuration
* Two threads, each running vector instructions on 4 lanes

* Threads may be controlled by SMT or CMP scalar processor (more later)
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VLT Configurations: 4 Vector Threads

L Short vector length configuration
* Four threads, each running vector instructions on 2 lanes

* Threads may be controlled by SMT or CMP scalar processor (more later)
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VLT Configurations: Pure Scalar Threads

L Scalar (no-vector) configuration
* Eight threads, each running scalar instructions on 1 lane

* Each lane operates as a simple processor
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VLT vs. SMT

 VLT: exploit TLP on idle DLP resources

e Different threads on different vector lanes

e FEach thread uses all functional units within a lane

d SMT: exploit TLP on idle ILP resources

e Different threads on different functional units

* In a vector processor, each thread uses all lanes

 Notes
* VLT and SMT are orthogonal & can be combined

* VLT is more important for a vector processor
® Several apps run efficiently on a 16-lane vector processor

" How many apps run efficiently on a 16-way issue processor?
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VLT Implementation
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VLT Implementation: Execution Resources

O Functional units = already available

O Vector registers for additional threads = already available

* VRF slice in each lane can store the register elements for each thread
* Note that each thread uses shorter vectors

L Memory ports = already available

* Necessary to support indexed and strided patterns even with long vectors
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VLT Implementation: Vector Instr. Bandwidth

1 Vector instruction issue bandwidth

* Must issue vector instructions separately for each thread

* Multiplex single vector control block, or replicate the block

* Multiplexing is sufficient as each vector instruction takes multiple cycles
O Instruction set

* Minor addition to specify configuration (number of threads)
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VLT Implementation: Scalar Instr. Bandwidth
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Scalar Processor

ROB

L Must process scalar instructions for
multiple vector threads

O Design alternatives

* Attach vector unit to SMT processor

* Attach vector unit to CMP processor

® Multiple cores share one vector unit

Combination of the above (CMT)

* Heterogeneous CMP

" One complex & multiple simpler cores
share a vector unit

U O Trade-off

Cost vs. utilization of vector unit
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VLT Implementation: Scalar Threads on Vector Unit

 Challenge: each lane requires 1-2 instructions per clock cycle
* Much higher instruction bandwidth than with vector threads

* No point in using multiple scalar cores to feed the lanes

] Design approach

* Introduce a small instruction cache in each lane
" Single-ported, 1 to 4 Kbytes is sufficient
" Feeds the functional units with instructions in tight loops
* (Cache misses in lanes handled by scalar core
® Scalar core instruction cache acts as a L2 instruction cache

" Low miss penalty
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Methodology

O Simulated processor
* Based on Cray X1 ISA
* Scalar unit: 4-way OOO superscalar
* Vector registers: 32 vector registers, max. vector length of 64
* Vector execution resources: 8 lanes, 3 functional units per lane

 Software environment
* All code compiled with production Cray C and Fortran compilers

* Highest level of vector optimizations enabled
" All speedups reported are in addition to vectorization

* Used ANL macros for multithreading

" Could also use OpenMP or other mulithreading approaches

O Further details in the paper
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Benchmarks

 Nine benchmarks, three categories
* High DLP (long vectors), medium DLP (short vectors), no DLP

O Examples
* High DLP: matrix multiply
" 96% vectorized, average vector length of 64 (maximum)

* Medium DLP: trfd (two electron integral transformation)

" 76% vectorized, average vector length of 11.2

* No DLP: ocean (eddy currents in ocean basin)

® 0% vectorized

J Note

* Benchmarks include some sequential portions with no DLP, no TLP
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Vector Thread Evaluation

O Base BVLT -2 threads O VLT -4 threads

Speedup
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1 Results for medium-DLP benchmarks on best scalar-core configuration
O Up to 2.3x performance improvement

* On top of vectorization for these applications
 Limitations

* Saturation of vector resources

* (ache effects, thread overhead, purely sequential portions
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VLT Cost Evaluation

O Default configuration: SU (4-way OOO) + VU

d SMT scalar unit
* (.8% area increase for 2 VLT threads
* 1.3% area increase for 4 VLT threads
1 CMP scalar unit (4-way OOO cores)
* 12.3% area increase for 2 VLT threads
* 26.9% area increase for 4 VLT threads
(d CMT scalar unit (4-way OOO cores, 2 threads/core)
* 13.8% area increase for 4 VLT threads
1 Heterogeneous CMP scalar unit (CMP-h)
* 3.49% area increase for 2 VLT threads
* 10.1% area increase for 4 VLT threads
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VLT Design Space Evaluation
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0 V4-CMT equal performance to V4-CMP

* At lower area increase (13.8% vs. 26.9%)

* Two 4-way OOO processors can saturate an 8-lane vector unit
O V4-SMT outperforms V4-CMP-h

*  V4-CMP-h configuration suffers thread imbalance
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Scalar Thread Evaluation
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O 8-lane VLT operates like a 8-way CMP with very simple cores
* No out-of-order execution, wide issues, branch prediction, etc
O Up to 2x compared to CMP (4-way cores with 2 threads/core)

* But performance may vary due to sequential code performance
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Conclusions

O Vector Lane Threading (VLT)
* Turn underutilized DLP resources (lanes) into TLP resources
* Multiple scalar processors share a vector unit

* Vector unit used as a CMP with very simple cores

 Results
* Up to 2.3x performance for applications with short vectors
* Up to 2.0x performance for applications with no vectors

* (Cost-effective implementation alternatives

 Overall, VLT improves the applicability of vector processors
* Good efficiency with both high DLP and low DLP
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