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Abstract

Multi-lane vector processors achieve excellent computa-
tional throughput for programs with high data-level paral-
lelism (DLP). However, application phases without signif-
icant DLP are unable to fully utilize the datapaths in the
vector lanes. In this paper, we propose vector lane thread-
ing (VLT), an architectural enhancement that allows idle
vector lanes to run short-vector or scalar threads. VLT-
enhanced vector hardware can exploit both data-level and
thread-level parallelism to achieve higher performance. We
investigate implementation alternatives for VLT, focusing
mostly on the instruction issue bandwidth requirements. We
demonstrate that VLT’s area overhead is small. For appli-
cations with short vectors, VLT leads to additional speedup
of 1.4 to 2.3 over the base vector design. For scalar threads,
VLT outperforms a 2-way CMP design by a factor of two.
Overall, VLT allows vector processors to reach high compu-
tational throughput for a wider range of parallel programs
and become a competitive alternative to CMP systems.

1 Introduction
Vector and data-parallel processors are making a come-

back in several domains, including scientific computing and
bioinformatics [9, 16, 30, 13, 29, 25], multimedia process-
ing [24, 19, 17, 5, 22, 15], and telecommunications [1,
31, 4]. Abundant data-level parallelism (DLP) in these
domains allows vector processors to provide higher peak
and sustained performance than superscalar and chip mul-
tiprocessor (CMP) designs while running a single thread,
issuing fewer instructions per cycle, and consuming less
power [13, 19]. Furthermore, vector processors support a
simple loop-based programming model, backed by mature
compiler technology for automatic vectorization.

Vector processors use replicated lanes in the vector unit to
exploit data-level parallelism [2]. Each vector lane contains
a slice of the vector register file, a datapath from each vec-
tor functional unit, and one or more ports into the memory
hierarchy. On each cycle, lanes receive identical control sig-
nals and execute multiple element operations for each vec-
tor instruction. Multiple lanes allow a vector unit to reach
high computational throughput without using the compli-
cated logic necessary for high instruction issue rates. Cur-
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Figure 1. The effect of increasing the number of vector lanes
on application performance.

rent vector processors use up to 16 lanes, and future designs
are expected to use even more.

Despite their efficiency for applications with long vec-
tors (high DLP), multi-lane vector processors are not con-
sidered as general as CMP designs. This is because applica-
tions with medium-length vectors, short vectors, or no vec-
tors at all cannot fully utilize the replicated lanes. Figure 1
shows the relative performance of a high-performance vec-
tor processor as we scale the number of lanes from 1 to 8.
Applications with long vectors throughout their execution
(mxm, sage) scale well with the number of lanes, which
clearly demonstrates the scalability advantage of vector pro-
cessors. Applications with short vectors (mpenc, trfd,
multprec, bt) or no vectors at all (radix, ocean,
barnes) in significant portions of their execution do not
benefit from more lanes, since they underutilize vector hard-
ware for long periods of time. For vector processors to be
viable for a wider range of application domains, it is impor-
tant to improve the performance of such applications on a
large number of lanes.

In this paper, we propose multithreading the vector unit
to increase the utilization of vector lanes when running low-
DLP code. We partition the vector lanes across several
threads, which execute in parallel. The number of lanes
assigned to each thread corresponds to its amount of data-
level parallelism. Even though each thread cannot utilize
all lanes on its own, the combination of threads can saturate



the available computational resources. We call this tech-
nique vector lane threading (VLT). VLT allows idle DLP
resources to be used to exploit the thread-level parallelism
(TLP) available in such applications, analogous to the way
a processor with simultaneous multithreading (SMT) allows
idle resources for instruction-level parallelism (ILP) to ex-
ploit TLP. [10, 11]. A VLT-enhanced processor can thus
achieve high computational efficiency with both high-DLP
and low-DLP applications. The major architectural chal-
lenge for VLT is the increased instruction issue bandwidth
required by the concurrent threads.

The major contributions of this paper are:
• We evaluate a set of alternative implementations that ad-

dress the VLT requirements for instruction issue band-
width. We show that the area requirements of most of
these alternatives are low.

• We demonstrate that VLT improves the performance of
an 8-lane vector processor for applications with medium
and short vectors by factors of 1.4 to 2.3 on top of the
speedup provided by vectorization.

• We show the potential of VLT with pure scalar threads
for applications that can be parallelized but do not vec-
torize. For several applications, a VLT-enhanced vector
processor provides twice the performance of a CMP with
two multithreaded wide-issue processors.

Overall, VLT improves the efficiency of vector processors
for applications that traditionally challenge their computa-
tional capabilities. Hence, it improves their applicability
to a wider range of parallel applications and makes them a
practical alternative to conventional CMP designs.

The rest of the paper is organized as follows. Section 2 re-
views the architecture of a modern vector processor. Section
3 introduces VLT. Sections 4 and 5 present the VLT design
alternatives for short-vector threads and scalar threads, re-
spectively. Section 6 presents our methodology and Section
7 the experimental evaluation. Section 8 presents related
work, and Section 9 concludes the paper.

2 Modern Vector Architecture
Figure 2 presents the block diagram of a modern vector

processor. For practical reasons, we focus on a high-end
vector design [13]. Nevertheless, VLT is equally applica-
ble to the simpler in-order multi-lane vector designs used
in embedded domains. The processor consists of three ma-
jor components: the scalar unit (SU), the vector unit (VU),
and the on-chip memory system [28]. The scalar unit is a
superscalar processor with its own first-level caches. Like
processors for PCs and servers, the SU supports wide-issue,
out-of-order (OOO), and speculative execution; register re-
naming; and multiple functional units. The SU fetches both
scalar and vector instructions but renames, schedules, and
executes only scalar instructions. Its reorder buffer tracks
both scalar and vector instructions for precise exceptions.

The vector unit consists of the parallel lanes and the vec-
tor control logic (VCL). Vector lanes provide register file
and execution resources for vector instructions [2]. The vec-
tor register file may contain more vector registers than the
number specified in the ISA in order to facilitate vector reg-
ister renaming [12]. The elements of each vector register are
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Figure 2. Block diagram of a modern vector processor.

distributed across lanes in a round-robin manner. Each lane
contains an arithmetic datapath for each vector functional
unit, as well as address generation, translation, and queuing
resources for each vector memory port. To execute a vec-
tor instruction, the control logic applies identical control to
all lanes so that they execute multiple element operations
in parallel every cycle. For an arithmetic instruction with
vector length of 64, an 8-lane VU takes 8 clock cycles to
execute it on one of the vector functional units.

The vector control logic implements out-of-order execu-
tion of vector instructions using hardware structures similar
to those in the SU (instruction queue, renaming, instruction
window) [12]. Because vector instructions specify multi-
ple element operations, each instruction occupies a vector
functional unit for several cycles even in multi-lane imple-
mentations. Hence, the VCL structures are much simpler
than their scalar counterparts because a lower instruction is-
sue rate is sufficient in the vector unit (typically one or two
instructions per cycle). The VCL also communicates with
the SU to resolve vector-scalar dependencies, to retire in-
structions, and to recover from branch mispredictions.

The on-chip memory system includes a large L2 cache.
Since the vector unit can tolerate memory latency, it ac-
cesses the L2 directly to avoid thrashing in the small L1
cache. The L2 is highly associative and highly banked to
provide a large number of ports for strided and indexed vec-
tor accesses [13]. Coherence between the L1 and the L2 is
maintained by hardware as described in [28]. Proper vector-
vector and scalar-vector access ordering is maintained using
compiler-generated memory barriers.

3 Vector Lane Threading (VLT)
Applications with long vectors utilize multiple lanes well,

even with relatively low instruction issue rates in the VU.
For example, Figure 2 shows an 8-lane vector unit with 5
vector functional units (3 arithmetic units and 2 load/store
ports). If all vector instructions define more than 40 element
operations, the datapaths in all lanes can be kept busy with



an issue rate of just 1 vector instruction per cycle. Unfor-
tunately, applications with short or medium vector lengths
cannot saturate the vector datapaths as easily. If the vector
length is smaller than the number of lanes (1 to 7), a vec-
tor instruction can never utilize all datapaths across the 8
lanes. Applications with medium vector lengths (8 to 40)
require a much higher instruction issue rate to fully utilize
all vector lanes. For example, at a vector length of 16, each
instruction executes in 2 cycles on 8 lanes, requiring an is-
sue bandwidth of 2 to 3 instructions per cycle to fully utilize
all 5 vector functional units. Finally, the vector lanes re-
main completely idle when running non-vectorizable code,
regardless of the issue rate available in the vector unit.

3.1 VLT Overview

The idea behind VLT is to allow underutilized lanes to
run multiple threads from a single parallel application. Even
though a single thread may not have high DLP, we can cre-
ate the effect of long vectors by running multiple threads in
parallel. The number of vector lanes assigned to each thread
depends on its DLP. VLT can run 2 threads of medium vec-
tor lengths with 4 lanes per thread, or 4 threads of short vec-
tor lengths with 2 lanes per thread. Alternatively, VLT can
execute 8 scalar threads (no vectors) with 1 lane per thread.
The result is fast execution of the application code on all
available hardware resources.

VLT takes advantage of the fact that most parallel ap-
plications contain multiple levels of parallelism. In a loop
nest, a vectorizing compiler can pick only one of the loops
to vectorize for DLP. VLT exploits additional parallelism
across other loops in the nest. VLT also allows vector re-
sources to be used with loops that are parallel but not vec-
torizable or with code that has pure task-level parallelism
(e.g., producer-consumer). In short, VLT enables the use of
vector lanes to exploit both DLP and TLP in a flexible man-
ner. Therefore, we can continue scaling the number of lanes
in vector processors without incurring low performance effi-
ciency for parallel applications without significant amounts
of DLP.

Furthermore, VLT breaks the vector length vs. stride
trade-off when vectorizing loop nests. Ideally, the com-
piler tries to select for vectorization a loop that provides
both long vectors (maximum hardware utilization) and unit-
stride accesses (minimum memory stalls). With loop nests,
it is often the case that one loop provides long vectors and
another provides unit-stride accesses. VLT allows the com-
piler to vectorize the loop that leads to unit-stride accesses
and multithread across the other loop to get high utilization
of the available vector lanes.

A vector processor with VLT is different from a
simultaneous-multithreaded (SMT) vector processor [11].
An SMT-based vector design runs multiple threads to bet-
ter utilize idle vector functional units to the lack of ILP in
a single thread. For a processor with multiple vector func-
tional units, low ILP can occur even in code with long vec-
tors. VLT uses multiple threads to better utilize idle vector
lanes to the lack of DLP in a single thread. VLT and SMT
solve orthogonal problems in a vector processor and could
be combined in a single design.

3.2 Hardware Requirements

VLT requires a single modification to the lane design. We
must provide separate control signals to the lanes assigned
to each thread. There is no need for additional registers,
as each lane already contains a large register file to store
vector register elements for applications with long vectors.
With VLT, we use the otherwise idle lanes to execute mul-
tiple threads, so we can use the register files in these lanes
to store the register values for the additional threads. When
using 2 VLT threads, a 32-entry vector register file with 64
elements per register is used as two 32-entry vector reg-
ister files with 32 elements per register. VLT requires no
changes to the memory system. The memory hierarchy in
a vector processor is already designed to support the large
number of accesses generated by the lanes. VLT places ad-
ditional pressure on non-sequential memory bandwidth, but
such access patterns are already supported for large stride
or indexed accesses with long vectors.

VLT does require additional support in the scalar unit and
the vector control logic. For vector threads, the scalar unit
must fetch instructions for all threads and execute any scalar
instructions. Additionally, the vector control logic must
schedule and issue instructions for all threads. There are
two general ways to handle both challenges: replication and
multiplexing. Replication suggests the use of multiple scalar
units or multiple vector control logic blocks. Multiplexing
suggests sharing the existing scalar unit or vector control
resources between multiple threads. Replication provides
higher performance at increased area overhead, while mul-
tiplexing offers the opposite trade-off. Our experiments in-
dicate that a multiplexed VCL with statically partitioned re-
sources across all threads performs as fast as a replicated
one and introduces negligible area overhead (a few multi-
plexors). For the scalar unit, the trade-off is more interest-
ing, and we analyze it in Section 4 for threads with short- or
medium-length vectors and in Section 5 for scalar threads.

3.3 Software Requirements

VLT requires no significant ISA modifications to run
multiple vector threads. Modern vector ISAs support par-
allel vector systems and include all instructions necessary
for a multithreaded API. For the evaluation in Section 7, we
extended a commercial vector ISA by a single configuration
instruction that associates each thread with a subset of the
available vector lanes.

VLT is applied selectively to sections of the program with
low DLP. For high-DLP phases, the program can still use all
lanes with a single vector thread. Hence, VLT does not have
a negative impact on program phases that already execute
efficiently on a vector processor. The program can also use
a different number of VLT threads in different phases, de-
pending on the DLP available in each phase. Switching the
number of threads may require saving and restoring vector
registers to and from memory. For the applications in Sec-
tion 6, switching was performed at the boundaries of large
parallel regions at which the vector registers did not contain
live values.

To use VLT, a programmer must parallelize loops or tasks
within the application code. In the case of loop nests, the



user can generate threads from an outer loop using OpenMP
directives. Vectorization of the inner loops is automatically
performed (when possible) by a vectorizing compiler. Over-
all, the combination of the familiar OpenMP model with au-
tomatic vectorization provides for a fairly intuitive parallel
programming environment. Alternatively, the user can use
a general thread package to parallelize the outer loop.

4 Vector Threads
When executing 2 or 4 vector threads with VLT, the hard-

ware appears to the programmer as a system with 2 or 4 vec-
tor processors, each with a smaller vector unit (4 or 2 vector
lanes). The original design has sufficient vector lanes to
support this illusion. VLT must still support scalar process-
ing and vector control for the additional vector threads.

4.1 Design Space for Vector Threads

As explained in Section 3, the major design choice for
supporting vector threads is whether to replicate or multi-
plex the scalar unit (SU). Replicating the scalar unit creates
a CMP-like system with 2 SUs that share the vector unit and
the L2 cache. Multiplexing the scalar unit is similar to an
SMT processor that can support 2 contexts [10]. For 4 vec-
tor threads, the design space includes an additional, hybrid
point: two SMT processors sharing the vector unit.

The choice of scalar unit used in the case of replication
adds an additional dimension to the design space. The SU
in the base vector processor for this study is a 4-way super-
scalar design. When introducing an additional SU, one may
choose to use an extra 4-way core or a smaller 2-way pro-
cessor. Again, the trade-off is between area overhead and
performance benefit. For VLT, the smaller SU will only be
used when two threads are available. Hence, using a smaller
second SU does not impact the non-VLT portions of the ap-
plication (pure scalar or long vectors). If the second scalar
unit is not identical to the first one, we essentially have a
heterogeneous CMP as the base of the VLT system [21].

4.2 Area Considerations

The performance differences between replicated and
multiplexed SUs are analyzed in Section 7. Here, we
quantify the area trade-off using a first-order approxima-
tion based on published area data for the Alpha architecture
processors. We study the Alpha family because it includes
three generations of superscalar processors (21064, 21164,
21264) [21] and the Tarantula vector extension for the Al-
pha 21464 [13]. To produce the area estimates for VLT, we
studied the die photos and area breakdowns for the Alpha
processors, adjusted their areas to account for any differ-
ences in cache sizes and functional unit mixes, and scaled
them to 0.10µm CMOS technology.

Table 2 presents the area estimates for the major com-
ponents of a vector processor. The overall die area is typ-
ically dominated by the on-chip L2 cache and the vector
lanes. These resources make up approximately 86% of the
base vector design used in Section 7. Table 2 shows the
estimated percent increase in area of various VLT config-
urations over the base vector design. All presented con-
figurations use a single, multiplexed VCL. The notation

Area (mm2)
2-way scalar unit + L1 caches 5.7
4-way scalar unit + L1 caches 20.9
2-way VCL 2.1
Vector lane 6.1
L2 cache (4MB) 98.4

Base vector processor 170.2
(4-way SU, 8 vector lanes)

Table 1. Area breakdown for vector processor components.

% Area
Configuration Increase

V2-SMT (2 VLT threads, 1 SMT SU) 0.8%
V4-SMT (4 VLT threads, 1 SMT SU) 1.3%
V2-CMP (2 VLT threads, 2 SUs) 12.3%
V2-CMP-h (2 VLT threads, 2 heter. SUs) 3.4%
V4-CMP (4 VLT threads, 4 SUs) 26.9%
V4-CMP-h (4 VLT threads, 4 heter. SUs) 10.1%
V4-CMT (4 VLT threads, 2 STM SUs) 13.8%

Table 2. Percentage area increase over the base vector
processor for various VLT configurations.

V n-{SMT, CMP, CMT }{-h} implies a VLT vector pro-
cessor that supports n vector threads using a multiplexed
(SMT ), replicated (CMP ), or hybrid (CMT ) scalar unit.
The optional −h suffix implies that heterogeneous scalar
units are used, with the first one being a 4-way processor
and all the others being 2-way processors. The area esti-
mates assume a 6% and 10% area penalty for 2-way and
4-way multithreading within a scalar processor [26].

The overhead of VLT is less than 2% for two or four vec-
tor threads (V 2-SMT or V 4-SMT ) when the SU is mul-
tiplexed. Replicated configurations for two vector threads
with identical (V 2-CMP ) or heterogeneous (V 2-CMP -h)
scalar units lead to area overheads of 13% and 4%, respec-
tively. Supporting 4 vector threads is expensive if four 4-
way SUs are used (37% for V 4-CMP ). However, four vec-
tor threads become practical if we use heterogeneous scalar
units (10% overhead for V 4-CMP -h) or two multithreaded
scalar units (4% for V 4-CMT ). Overall, the area estimates
show that several VLT configurations for both 2 and 4 vec-
tor threads are possible at an area overhead of less than 5%.
The VLT area overhead decreases further as the on-chip L2
cache becomes larger, a common trend with modern proces-
sors.

5 Scalar Threads
For code that can be parallelized but does not vector-

ize, it is tempting to use the 8 vector lanes to run 8 scalar
threads. The vector lanes have several of the resources that
one would find in a simple scalar unit, such as registers,
functional units, and memory ports. Nevertheless, execut-
ing scalar threads on the vector lanes is challenging, as it
creates an instruction issue bandwidth problem. If each



Scalar Unit Superscalar out-of-order processor
4-way instruction fetch/issue/retire
64-entry instruction window and ROB
4 arithmetic units, 2 memory ports
16-KByte, 2-way associative, L1 caches

Vector Control 2-way issue, 32-entry VIQ
32-entry vector instruction window

Vector Lane 3 arithmetic units, 2 memory ports
(8 replicas) 64 physical vector registers (8 elements/lane)

Memory System 4-MByte L2 cache
4-way associative, 16-way banked
10 cycles hit, 100 cycles miss penalty

Table 3. The base vector processor parameters.

scalar thread consumes instructions at the rate of two per
cycle, the total instruction issue bandwidth required in the
vector unit is 16 instructions per cycle. Such a high rate is
impossible to meet, since the vector unit is fed instructions
by a 4-way scalar unit.

To enable scalar execution, we re-engineer the vector
lanes to include a small instruction cache and sequencing
logic. With these enhancements, each lane can operate in-
dependently as a 2-way in-order processor. Out-of-order
execution within a lane is not possible without introducing
additional structures, such as an instruction window and a
reorder buffer. Since each lane can still access the L2 cache,
per-lane data caches are not necessary. The latency of the L2
cache is not a major performance issue, since the lanes al-
ready include queuing resources for access decoupling [14].

We studied the case of scalar thread execution on the vec-
tor lanes using a 4-KByte instruction cache in each lane.
The small cache is appropriate for threads generated from
tight nested loops. The cache has the same capacity as the
vector register file partition in the lane, but is significantly
smaller, as it only requires a single access port. Instruction
cache misses in the lanes are forwarded to the scalar unit for
service as L1 instruction cache misses. Exceptions in each
scalar thread are precise and are reported to the operating
system by interrupting the scalar unit.

An alternative to executing scalar threads with VLT is to
build a CMP system out of multiple scalar units. For exam-
ple, the V 4-CMT without the vector unit is a 2-core CMP
system that can execute up to two scalar threads per core.
Its area is 13% smaller than that of the base vector design
and 26% smaller than the VLT version of V 4-CMT . How-
ever, such a CMP design offers fewer execution resources
than running the threads on the vector lanes. Two scalar
cores in our evaluation presented in Section 7 include a to-
tal of 8 arithmetic datapaths. On the other hand, the 8 vector
lanes combined include 24 arithmetic datapaths, up to 16 of
which can be utilized with 2-way instruction fetch per lane.
Similarly, the 8 lanes contain twice as many memory ports
as two 4-way scalar units.

6 Methodology
Table 3 presents the parameters of the simulated base vec-

tor design. The processor executes the Cray X1 instruction
set [8], which defines 32 vector registers with 64 64-bit el-

ements per register. The base scalar unit is a 4-way super-
scalar processor with first-level caches. The vector control
logic supports 2-way instruction issue (out-of-order) on the
8 vector lanes. The peak arithmetic performance of the vec-
tor unit is 24 64-bit operations per cycle (3 functional units
times 8 lanes). A base processor with 16 vector lanes [13]
would increase the usefulness of VLT for low-DLP applica-
tions. For a 2-way SU, we use identical caches but half the
resources of the 4-way unit.

Table 4 presents the applications used in this study. For
each application we list the percentage of vectorization, the
average vector length in operations, the most common vec-
tor lengths, and the percentage of execution time on the base
vector processor that is amenable to VLT (opportunity). The
top two applications (mxm and sage) have long vectors and
fully utilize the 8 vector lanes as shown in Figure 1. We do
not evaluate VLT with these two applications, since there
is no opportunity for optimization and the VLT system per-
forms exactly as the base system. The next set includes ap-
plications that are vectorizable but have medium or short
vectors (mpenc, trfd, multprec and bt). These ap-
plications can be accelerated using 2 to 4 vector threads.
The final three applications are parallel but not vectorizable
by an automated compiler (radix, ocean, and barnes).
For these applications, We evaluate scalar threads executing
on the vector lanes.

We compiled all benchmarks using the production C and
Fortran compilers for the Cray X1 system with all optimiza-
tions for both scalar and vector code. Vectorization was
automatic without any manual guidance. On several oc-
casions, the compiler was able to perform significant loop
nest restructuring, which led to longer vectors than initially
expected. In other words, the baseline code is highly op-
timized. Threads were identified manually in low-DLP re-
gions of each benchmark. The threads are coarse-grained,
typically in the millions of instructions. All processor con-
figurations, base and VLT, were simulated on a detailed
execution-driven simulator for X1-based parallel vector sys-
tems. The simulator accurately models the behavior and
timing of all components in a vector system: scalar unit(s),
vector control, vector lanes, and caches.

7 Evaluation
This section evaluates the performance potential of VLT

first for vector threads and then for pure scalar threads.

7.1 Vector Thread Analysis

Figure 3 presents the speedup of VLT over the base vector
processor for the four applications with vector threads. We
use the V 2-CMP configuration for 2 threads (two 4-way
scalar units) and the V 4-CMP configuration for 4 threads
(four 4-way scalar units). These configurations represent
the maximum performance potential, as fully replicated re-
sources best address the instruction issue requirements of
VLT. We discuss area-efficient configurations in the follow-
ing paragraphs. With 2 threads, the VLT speedup ranges
from 1.14 to 2.15. With 4 threads, the VLT speedup ranges
from 1.40 to 2.3. These speedups are in addition to the per-
formance improvements already achieved by vectorization



Name Description % Vect Avg VL Common VLs % Opportunity
mxm dense matrix multiply 96 64.0 64 –
sage hydrodynamics modeling 94 63.8 64 –

mpenc video encoding 76 11.2 8, 16, 64 78
trfd [6] two-electron integral transformation 73 22.7 4, 20, 30 ,35 99
multprec multiprecision array arithmetic 71 25.2 23, 24, 64 81
bt [3] block tridiagonal benchmark 46 7.0 5, 10, 12 70

radix radix sort 6 62.3 24, 52, 64 90
ocean [32] eddy currents in ocean basin - - - 96
barnes [32] galaxy system simulation - - - 98

Table 4. Characteristics of the applications studied. “% Vect” is the percentage of vectorization measured in operations. “Avg
VL” is the average vector length and “Common VLs’” lists the most common vector length values. “% Opportunity” is the
percentage of execution time on the base processor that VLT can potentially accelerate with multiple threads.
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Figure 3. The VLT speedup for vector threads over the base
vector processor.

in the base design. The exact speedup for each application
depends on its average vector length and the opportunity for
VLT. The average vector length indicates how many lanes
are available for execution of additional threads. The op-
portunity indicates the portion of the original execution time
that could be accelerated by multithreaded execution in the
lanes. For example, mpenc has an average vector length
of 11, which indicates that only 2 to 4 vector lanes are effi-
ciently used in the original configuration. With the potential
for 1 to 3 additional threads and a 78% opportunity, mpenc
should achieve an overall speedup of 1.6 to 2.3. Our results
indicate that mpenc reaches a speedup of 1.8. Secondary
factors that affect the observed speedup include caching ef-
fects and the thread API overhead.

Figure 4 provides insight into the performance advantage
of VLT. It presents the normalized utilization of the arith-
metic datapaths in the vector lanes during the execution of
each application. There are 24 arithmetic datapaths, three
per lane. On every clock cycle, a datapath may be busy with
an element operation; stalled because of dependencies or
insufficient vector instruction issue bandwidth; or idle. We
separate two cases of idle datapaths. First, all 8 datapaths
in a vector functional unit may be idling due to a complete
lack of vector instructions. Second, some of the 8 datapaths
may be idling due to very small vector lengths. Figure 4
shows that VLT compresses the program execution by al-
lowing multiple vector operations to issue and execute in
parallel. The number of stall and idle cycles is reduced and
speedups of up to 2.3 are achieved. Nevertheless, a signif-
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Figure 4. The datapath utilization in the 8 vector lanes for
the base and VLT designs. The utilization is normalized
over the execution on the base configuration. A lower bar
implies faster execution time. Each lane contains 3 arithmetic
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icant number of stall and idle cycles remains, due to pure
sequential portions in the application and imbalances in the
functional unit mix.

Figure 5 shows the performance of VLT with two and
four vector threads for all scalar unit configurations. The
notation for each configuration is explained in Section 4.
All performance numbers represent speedup of different im-
plementations of VLT over the base vector design. For two
vector threads, there is no significant difference between the
replicated (V 2-CMP ) and the smaller multithreaded (V 2-
SMT ) scalar unit. With four threads, on the other hand,
the scalar unit configuration becomes a significant factor. A
single multithreaded SU (V 4-SMT ) is no longer sufficient
for best performance because 4 instructions per cycle are not
sufficient for 4 vector threads. Fortunately, the hybrid scalar
unit configuration V 4-CMT (2 SUs, each 2-way threaded)
performs as well as the expensive in area, fully replicated
V 4-CMP (4 scalar units). This result indicates that an is-
sue rate of 8 instructions per cycle is sufficient for 4 vector
threads and that full performance can be achieved at a rea-
sonable area overhead (13% area increase for V 4-CMT for
up to 2.3x performance improvement).
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Figure 5. Performance evaluation of the design space for
vector threads.

Figure 5 also presents the performance achieved with the
heterogeneous V 4-CMP -h configuration for the scalar unit
(one 4-way processor and three 2-way processors). It pro-
vides speedup over the base design (1.3 to 1.8) but performs
worse than all other VLT configurations. Combined, the
4 cores in V 4-CMP -h provide sufficient instruction issue
bandwidth for 4 vector threads (4 ∗ 1 + 3 ∗ 2). However,
a thread running on one of the 2-way scalar units is always
restricted to an issue rate of 2 instructions per cycle, which
may be insufficient for program phases with very short vec-
tors or a low degree of vectorization. In addition, for SPMD
applications that use barrier synchronization, like radix,
ocean, and barnes, performance is determined by the
slowest thread. In contrast, VLT configurations like V 4-
CMT allow two threads to flexibly share the instruction
issue rate of a 4-way scalar unit.

7.2 Scalar Thread Analysis

Figure 6 evaluates the potential of VLT with scalar
threads running on the vector lanes. Essentially, each vector
lane operates as a 2-way in-order processor. The system op-
erates like an 8-processor CMP with very simple cores [18].
We do not use the scalar unit to run a 9th scalar thread, since
our thread library requires that the number of threads be a
power of two. This is not a fundamental limitation.

We compare the execution of scalar threads in the vec-
tor lanes using VLT to the execution of scalar threads on
the replicated scalar units that were already introduced to
support vector threads. Specifically, we compare the V 4-
CMT configuration against the same configuration without
the vector unit and the VLT support (CMT ). This is es-
sentially a system with two 4-way superscalar cores, each
capable of simultaneously executing up to two threads. As
shown in Figure 6, VLT provides twice the performance of
the purely scalar design for radix and ocean. Since each
thread in these applications includes only a limited amount
of instruction-level parallelism, it is better to run 8 threads
on 8 very simple processors, rather than 4 threads on 2 wide-
issue processors. VLT thus provides a significant perfor-
mance advantage. On the other hand, each scalar thread
for barnes underperforms in the vector lanes, so despite
VLT’s higher number of threads, VLT and parallel execu-
tion on the CMT system have equal performance.

We should note that for applications with long vectors
(mxm and sage), the performance advantage of the vec-
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Figure 6. Performance for 8 VLT scalar threads running on
the vector lanes over 4 scalar threads running on the scalar
units of the V4-CMT configuration (2 4-way superscalar pro-
cessors, 2-way threaded).

tor design over the CMT is nearly proportional to the ratio
of their peak throughputs (8 to 1). VLT retains the vector
performance advantages over CMP for long vector applica-
tions and allows the vector design to reach or exceed the
CMP performance for non-vectorizable applications. Over-
all, VLT provides good performance for vector threads with
medium and short vectors at reasonable area overheads. The
V 4-CMT VLT configuration provides speedup of 1.4 to 2.3
over an aggressive vector processor. For scalar threads, VLT
exhibits significant performance potential for certain appli-
cations, but additional work is necessary to achieve signifi-
cant benefits in all cases.

8 Related work
Mateo Valero, Roger Espasa and their colleagues devel-

oped and evaluated several concepts for advanced vector
processors: decoupled execution of vector instructions [14],
out-of-order execution of vector instructions [12], SMT
vector processors [11], and vector processors with wide-
issue scalar units [28]. Our work builds on techniques
in [14, 12, 28] and is orthogonal to [11], as explained in
Section 3. Asanović quantified the design complexity and
performance benefits of multi-lane vector processors [2].
These techniques are currently used in advanced vector pro-
cessors such as the Cray X1 [9], the NEC SX-6 [16, 30], and
the proposed Alpha Tarantula [13]. Our work utilizes mul-
tiple lanes for applications with limited DLP.

The idea of running threaded code on vector resources
was first introduced by Chiueh in [7], but his work did
not consider multiple lanes, the central concept in our
study. The Scale architecture can also facilitate vector-like
or threaded execution on an array of tightly coupled pro-
cessors with register-to-register communication [20]. The
Scale philosophy is to enhance a tightly coupled CMP to
run vector code efficiently, while we approach the same is-
sue by enhancing a vector processor to run threaded code
efficiently. The evaluation in [20] uses application code
with assembly for the Scale instruction-set, while we use bi-
naries produced by a vectorizing compiler from high-level
code. The IBM Cell processor can execute statically sched-
uled SIMD threads on its 8 SPUs, orchestrated by control



code running on a superscalar processor [27]. If all SPUs
operate in lock-step, the 8 SPUs behave as a vector unit for
long vectors.

This work also draws on techniques developed for chip
multiprocessors [23] and simultaneous-multithreaded pro-
cessors [10] for scalar instruction sets.

9 Conclusions
We presented vector lane multi-threading, a technique

that uses idle vector resources in a vector processor to ex-
ecute additional threads with short vectors or no vectors at
all. VLT improves the utilization of DLP resources simi-
larly to the way SMT improves the utilization of ILP re-
sources. In other words, VLT allows a vector processor
to efficiently exploit thread-level parallelism with existing
DLP hardware. VLT is practical to implement and pro-
vides significant performance advantages for applications
that have phases with short vectors or no vectors.

VLT helps manufacturers of vector systems to continue
increasing the number of lanes to scale vector performance.
This scaling technique works well for applications with high
amounts of DLP, as it provides greater performance with-
out increasing the instruction issue bandwidth requirements.
With the addition of VLT, the new vector lanes can be effi-
ciently used for parallel applications that do not have long
vectors over their entire execution. In practice, VLT allows
vector processors to be an competitive alternative to CMP
designs for a wide range of parallel applications.
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