
 

 

Abstract  

This paper conducts a survey of several small clusters 

of machines in search of the most energy-efficient data 

center building block targeting data-intensive 

computing. We first evaluate the performance and 

power of single machines from the embedded, mobile, 

desktop, and server spaces.  From this group, we 

narrow our choices to three system types. We build five-

node homogeneous clusters of each type and run Dryad, 

a distributed execution engine, with a collection of data-

intensive workloads to measure the energy consumption 

per task on each cluster. For this collection of data-

intensive workloads, our high-end mobile-class system 

was, on average, 80% more energy-efficient than a 

cluster with embedded processors and at least 300% 

more energy-efficient than a cluster with low-power 

server processors.  

1 Introduction 
Power consumption is a first-order design constraint 

in the data center (DC).  Although still small in absolute 

terms, DC power consumption is growing rapidly, 

doubling between 2000 and 2005 [8].  The energy usage 

of the computational building blocks of the DC is 

critical to the overall power consumption, since it 

affects the design and operation of the cooling and 

power distribution infrastructure as well as the 

computational infrastructure [3, 13, 15].   

Traditionally, the computational nodes in DCs 

operate with low system utilization but require high 

availability and fast response time. Researchers have 

therefore advocated the design of hardware whose 

power consumption is proportional to the system load 

[2]. However, there is a new class of DC benchmarks 

that use as many resources as are available. Many of 

these applications are I/O- and network-bound but 

exhibit phases of high CPU utilization. Dryad, Hadoop, 

MapReduce, and Condor are frameworks for this type 

of application [7, 9, 12, 20]. 

In the past, research on these data-intensive 

workloads has assumed that the applications would be 

bottlenecked by low I/O bandwidth and high latency. 

However, the introduction of NAND flash-based solid-

state drives (SSDs) virtually eliminates the disk seek 

bottleneck, enabling much higher I/O bandwidth and 

very low latency. Although SSDs do not yet provide the 

capacity of magnetic disk drives, SSDs can be very low-

power devices and have the ability to consolidate the 

storage system by providing far more IOPS, better 

feeding the processor with data [11].  

In this paper, we characterize clusters across a variety 

of system types in order to find energy-efficient DC 

building blocks, with a focus on emerging data-

intensive applications. 

We initially characterize a variety of embedded, 

mobile, desktop, and server systems using single-

machine performance, power, and energy efficiency. 

Using these benchmarks as a guide to prune the system 

space, we build homogeneous clusters of the top three 

systems.  We execute DryadLINQ applications on these 

clusters in order to understand their energy efficiency 

for different application types. 

This paper makes the following contributions: 

 We characterize a wide range of real systems from 

embedded and mobile to desktop and server 

processors, focusing on single-thread and/or single-

system performance. 

 We characterize homogeneous compute clusters 

composed of embedded, mobile, and server 

processors in the context of data-intensive 

applications to find the most energy-efficient 

computing infrastructure over a wide range of 

workloads.   

 We compare the energy efficiency of system classes 

that have not been compared in previous work, and 

we make this comparison across workloads with 

varying computational and I/O demands. 

The rest of this paper is organized is follows. Section 

2 is an overview of related work in this area.  Section 3 

describes our experimental infrastructure and the 

hardware and software evaluated. Section 4 presents our 

experimental results. We further discuss these results in 

Section 5 and conclude with Section 6. 

2 Related Work 
A growing body of research proposes energy-efficient 

building blocks for cluster and DC computing, but this 

work has typically investigated only a limited subset of 

system types and/or applications. 

One major trend is to propose building blocks for 

data-intensive computing that combine embedded 

processors, such as the Intel Atom, with solid-state 

disks. However, many of these proposed systems have 

been evaluated for only a single workload or against a 

limited set of alternative hardware. 

For example, Szalay et al. propose “Amdahl blades,” 

consisting of Intel Atom processors with SSDs, and 

present a scaling study comparing these blades to 

traditional high-end cluster nodes using data from a 

synthetic disk-stressing benchmark [19].  The Gordon 
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system, designed by Caulfield et al., also combines 

Atom processors with flash memory.  It was evaluated 

against a Core 2 (single-core)-based server over a 

variety of MapReduce workloads using simulation and 

modeling rather than physical measurements [5]. 

The FAWN cluster, proposed by Andersen et al., 

consists of ultra-low-end embedded processors and 

high-end solid-state disks [1].  A version using the Intel 

Atom was evaluated across a wide range of workloads 

[21].  This evaluation showed FAWN breaking the 

energy-efficient sorting record set by Beckmann in 2010 

with similar hardware [4]. The overall conclusion of the 

evaluation was that the FAWN hardware was superior 

to desktop- and server-class hardware for I/O-bound 

workloads and for memory-bound workloads with either 

poor locality or small working sets.  However, high-end 

mobile processors were not evaluated in the FAWN 

study.  Reddi et al. use embedded processors for web 

search and note both their promise and their limitations; 

in this context, embedded processors jeopardize quality 

of service because they lack the ability to absorb spikes 

in the workload [16]. 

Several studies have proposed high-end laptop 

hardware for energy-efficient DC computing.  Rivoire et 

al. used a laptop processor and laptop disks to set an 

energy-efficient sorting record in 2007 [17], while Lim 

et al. proposed a laptop-processor-based building block 

for Web 2.0 workloads in 2008 [14]. However, these 

systems preceded the movement toward embedded 

processors and SSDs, and their conclusions must be 

revisited in light of these recent developments. 

Finally, the CEMS servers proposed by Hamilton use 

a variety of desktop processors and a single enterprise-

class magnetic disk [10]. These servers are evaluated 

using a CPU-bound webserver workload designed to 

exercise the CPU at varying utilizations up to 60%.  

Unlike much of the previous work, this study found that 

for this workload, the systems with the lowest power 

consumption were not the most energy-efficient 

systems. 

3 System Overview 
In this section, we describe the hardware platforms 

we examine, the benchmarks we use to evaluate them, 

and the infrastructure used to measure power. 

3.1 Hardware  
We consider a variety of systems based on embedded, 

mobile, desktop, and server processors. Table 1 

provides a list of the important features of the systems 

under test (SUTs). All systems are running 64-bit 

Windows Server 2008 with support for Dryad and 

DryadLINQ jobs. We tried to provision the systems 

with 4 GB of DRAM per core when possible, but two of 

the embedded systems were only able to address a 

fraction of this memory. The industry-standard server 

system used 10,000 RPM enterprise hard disks, and the 

other systems each contained a single Micron RealSSD. 

This difference affected the server’s average power by 

less than 10% and had a negligible effect on the 

system’s overall energy efficiency.  

3.2 Benchmark Details 
We ran an assortment of benchmarks, some CPU-

intensive, others utilizing disk and network, in order to 

find the most energy-efficient cluster building block and 

see how robust this choice is across different types of 

workloads. A few of these benchmarks are used to 

evaluate single-machine performance, and the rest are 

DryadLINQ jobs dispatched to five-node clusters. We 

ran a single instance of each application at a time. 

The single-machine benchmarks are as follows: 

 SPECpower_ssj 2008. This benchmark uses a CPU- 

and memory-intensive Java webserver workload to 

probe the power usage of a SUT's CPU at various 

utilizations. Since the performance of this 

benchmark can vary drastically depending on the 

JRE used, we use the Oracle JRockit JRE tuned with 

platform-specific parameters based on similar 

reported benchmark runs. 

Table 1 – Systems evaluated in this paper. Costs are approximate and given in US dollars at the time of purchase.  Costs are not given for systems that 

were donated as samples.  In the memory column, the star denotes the maximum amount of addressable memory. 

System Under Test CPU Memory Disk(s) System Information Approx. cost 

1A (embedded) 
Intel Atom N230, 1-core, 1.6 GHz, 

4W TDP 
4 GB DDR2-800 1 SSD Acer AspireRevo $600 

1B (embedded) 
Intel Atom N330, 2-core, 1.6 GHz, 

8W TDP 
4 GB DDR2-800 1 SSD Zotac IONITX-A-U $600 

1C (embedded) Via Nano U2250, 1-core, 1.6 GHz 2.37 GB DDR2-800* 1 SSD Via VX855 sample 

1D (embedded) Via Nano L2200, 1-core, 1.6 GHz 2.86 GB DDR2-800* 1 SSD Via CN896/VT8237S sample 

2 (mobile) 
Intel Core2 Duo, 2-core, 2.26 GHz, 

25W TDP 
4 GB DDR3-1066 1 SSD Mac Mini $1200 

3 (desktop) 
AMD Athlon, 2-core, 2.2 GHz, 65W 

TDP 
8 GB DDR2-800 1 SSD MSI AA-780E sample 

4 (server) 
AMD Opteron, 4-core, 2.0 GHz, 

50W TDP 
32 GB DDR2-800 2 10K RPM 

Supermicro             

AS-1021M-T2+B 
$1900 
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 SPEC CPUint 2006. This benchmark suite runs a 

variety of CPU and memory-intensive jobs and then 

provides a score based on the aggregate performance 

of these individual benchmarks. We do not make any 

architecture-specific optimizations for this workload. 

 CPUEater. This benchmark fully utilizes a single 

system's CPU resources in order to determine the 

highest power reading attributable to the CPU. We 

use these measurements to corroborate the findings 

from SPECpower. 

The multi-machine DryadLINQ benchmarks are: 

 Sort. Sorts 4GB of data with 100-byte records. The 

data is separated into 5 or 20 partitions which are 

distributed randomly across a cluster of machines. 

As all the data to be sorted must first be read from 

disk and ultimately transferred back to disk on a 

single machine, this workload has high disk and 

network utilization. 

 StaticRank. This benchmark runs a graph-based 

page ranking algorithm over the ClueWeb09 dataset 

[6], a corpus consisting of around 1 billion web 

pages, spread over 80 partitions on a cluster. It is a 

3-step job in which output partitions from one step 

are fed into the next step as input partitions. Thus, 

StaticRank has high network utilization. 

 Prime. This benchmark is computationally 

intensive, checking for primeness of each of 

approximately 1,000,000 numbers on each of 5 

partitions in a cluster. It produces little network 

traffic. 

 WordCount. This benchmark reads through 50 MB 

text files on each of 5 partitions in a cluster and 

tallies the occurrences of each word that appears. It 

produces little network traffic. 

3.3 Measurement Infrastructure 
The measurement infrastructure consists of a 

hardware component to physically measure both the 

total system power and power factor and a software 

component to collect both the power measurements and 

application-level Event Tracing for Windows (ETW) 

metrics.  

We use WattsUp? Pro USB digital power meters to 

capture the wall power and power factor once per 

second for each machine or group of machines. We use 

the API provided by the power meter manufacturer to 

incorporate measurements from the power meter into 

the ETW framework. 

4 Evaluation 
In this section, we first examine the single-machine 

performance of a range of machines.  We use these 

results to identify the three most promising candidate 

systems for the cluster-level benchmarks.  The results 

from both the single-machine and multi-machine 

benchmarks show that the mobile-class system 

consistently provides high energy efficiency on a wide 

range of tasks, while the other classes of systems are 

suitable for a more limited set of workloads. 

4.1 Single-machine benchmarks 
To pare down our list of systems, we used three 

single-machine benchmarks to characterize the systems’ 

single-thread performance and power consumption.  

Based on this characterization, we can eliminate any 

systems that are Pareto-dominated in performance and 

power before proceeding to the cluster benchmarks. 

4.1.1 Performance 
We use SPEC CPU2006 integer benchmarks to 

compare the single-threaded SPEC-rate performance 

across all the platforms in Table 1. This benchmark, 

because it is CPU-intensive, should favor the processors 

with more complex cores. In addition to the dual-socket 

quad-core AMD Opteron server in Table 1 (SUT 4), we 

included two more Opteron servers: a dual-socket 

single-core server (2x1) with 8 GB of RAM and a dual-

socket dual-core server (2x2) with 16 GB of RAM. 

These systems were included to quantify single-core 

performance improvements over time, as well as the 

benefits of additional cores.  Figure 1 shows the per-

 

Figure 1. Per-core SPEC CPU2006 integer performance normalized to the Atom N230 for the systems (embedded, mobile, desktop, and server 

processors) from Table 1 plus two legacy Opteron servers. 
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core results, which are normalized to the Intel Atom 

single-core-based system (SUT 1A). 

There are two surprising results. First, the mobile 

Intel Core 2 Duo (SUT 2) has per-core performance that 

matches or exceeds that all of the other processors, 

including the server processors. Second, and more 

surprising, is the fact that the Atom processor performs 

so well on the libquantum benchmark. Overall, these 

results demonstrate that SUT 2 (Intel Core 2 Duo) and 

SUT4 (AMD Opteron 2x4) provide the highest single-

thread performance. 

4.1.2 Power consumption 
Single-thread performance is not the only factor to 

consider when selecting the appropriate energy-efficient 

building blocks for the DC. Before diving into 

benchmarks that provide data on work done per Watt or 

Joule, we measure system power at idle and when 

running CPUEater at 100% utilization.  Figure 2 shows 

power consumption at these two utilization points for all 

of the systems from Figure 1, ordered by the maximum 

system power under full CPU load. Surprisingly, the 

four embedded-class systems do not have significantly 

lower idle power than the other systems; in fact, the 

mobile-class system with a 25 W TDP processor has the 

second-lowest idle power. However, the 100% utilized 

systems result in a different ordering. The mobile-class 

system now has significantly higher power than the 

embedded systems, which use processors with 4-16 W 

TDPs. 

4.1.3 Balancing performance and power 
To confirm our conclusions based on examining 

performance and power separately, we used 

SPECpower_ssj to characterize the amount of work or 

operations done per watt. As Figure 3 shows, the Intel 

Core2 Duo system (SUT 2) and the Opteron (2x4) 

system (SUT 4) yield the best power/performance, 

followed by the Atom system (SUT 1B).  These results 

reinforce our conclusions from looking at power and 

performance separately. Furthermore, this benchmark 

goes beyond the single-core performance measured by 

SPEC CPU 2006. 

4.2 Multi-machine Dryad benchmarks 
Based on the characterization from Section 4.1, we 

set up 5-node clusters of the three most promising 

systems (1B, 2, and 4) and ran the four DryadLINQ 

benchmarks: Sort, Primes, StaticRank, and WordCount. 

Figure 4 shows the average energy usage for these 

benchmarks, normalized to the mobile system (SUT 2). 

It shows two versions of Sort that only differ by the 

number of data partitions, 5 or 20; the 20-partition 

version has better load balance. 

The energy usage per task of SUT 2, the mobile Core 

2 Duo-based server, is always lower than that of SUT 4, 

the Opteron-based server, across all the benchmarks, 

using three to five times less energy overall for the 

different benchmarks. 

The relative energy usage of SUT 1B, the Atom-

based system, varies the most from benchmark to 

benchmark.  It degrades significantly for Primes, which 

is the most CPU-intensive benchmark.  For this 

benchmark, the traditional server system (SUT 4) is 

more energy-efficient than the Atom-based system.  

 
Figure 3. SPECpower_ssj results for four of the systems from Table 1 plus the two previous generations of Opteron servers. 
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Figure 2. Power consumption at idle and at 100% CPU utilization for all the systems in Figure 1. The systems are shown in order from 

lowest to highest power consumption at 100% utilization. 
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Figure 4. Normalized average energy usage for SUT 2, SUT 1B, and 

SUT 4 for each benchmark on each system and the geometric mean. 
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SUT 4 has a performance advantage with four times the 

number of cores, enabling it to finish parallel and 

computationally intense tasks more quickly but with a 

significantly higher power envelope than SUT 1B. 

This advantage disappears, however, for StaticRank, 

which has a mix of CPU and I/O. SUT 4 can finish this 

job only slightly faster than SUT 2 or 1B, but it uses 

much more power. However, it should be noted that the 

partition size used for StaticRank is set by the memory 

capacity limitations of the mobile and embedded 

platforms. This biases the results in their favor, because 

at this workload size, SUT 4’s execution is dominated 

by Dryad overhead. 

More surprisingly, the Atom-based system is less 

energy-efficient for Sort than the mobile-CPU-based 

system.  Previous work on platforms for sequential I/O-

intensive workloads used Atom-based systems on the 

assumption that the I/O would be the bottleneck and the 

CPU would thus not be heavily utilized [4, 19, 21].  

However, the SSDs in these systems mitigate this 

bottleneck for Sort, placing more stress on the CPU. In 

contrast, the Atom-based system is most energy-

efficient for WordCount, which is the least CPU-

intensive of the four benchmarks. 

These energy measurements on cluster benchmarks 

complement the results on single-machine benchmarks: 

low-power mobile class platforms have an advantage 

over high-power, high-performing server-class 

platforms as energy-efficient DC building blocks that do 

not skimp on performance. Their performance and 

power also are more robust over a wider range of 

benchmarks than the embedded-class systems. 

5  Discussion  
The results demonstrate a clear class of systems that 

is well suited for data-intensive computing. This result 

is somewhat surprising due to the interface limitations 

of real mobile-class systems. We discuss this result in 

more detail, and we follow that discussion with some of 

the system improvements that would be necessary to 

build a more compelling energy-efficient system, 

requiring minor modifications to today’s components.  

5.1 Energy Efficiency 
Our results show that low-power embedded 

components are not necessarily ideal for energy 

efficiency, even for applications that are not normally 

considered CPU-intensive (e.g. Sort).  With the increase 

in I/O capabilities provided by SSDs, our results 

indicate that embedded-class processors are not always 

sufficient to balance the I/O bandwidth. In fairness, one 

disadvantage that these systems had is that the chipsets 

and other components dominated the overall system 

power; in other words, Amdahl’s Law limited the 

benefits of having an ultra-low-power processor.  As the 

non-CPU components become more energy-efficient, 

this type of system will be more competitive. 

Our results also confirm that standard servers are 

becoming more energy-efficient. We presented results 

from three consecutive generations of Opteron servers 

running SPEC benchmarks. Over time, these systems 

have maintained or improved single-thread 

performance, increased system throughput, and 

simultaneously reduced overall system power and 

energy. Until recently, embedded systems were the only 

systems that exhibited the same trends. This is a result 

of combining lower-power server processors with 

efficient power supplies and related components. 

However, there still is a long way to go.  

5.2 The missing links 
Research on energy-efficient DC building blocks has 

largely been limited to evaluations of existing hardware. 

While simulation provides the flexibility to derive any 

reasonable system imaginable, the runtimes for the 

applications used in this study make simulation of any 

type prohibitively expensive. For this data-intensive 

benchmark suite, the wall-clock runtime varied from 

just over 25 seconds (WordCount on SUT 4) to ~1.5 

hours (StaticRank on SUT 1B).  Therefore, this study 

was constrained to use existing hardware. However, 

there are several clear improvements that could be made 

to increase the energy efficiency of future datacenter 

hardware.   

First, the embedded and mobile systems had very 

restrictive I/O subsystems, limited by the number of 

ports and overall bandwidth. Likewise, the network is 

also a limiting factor, which can be solved with more 

energy efficient designs and higher bandwidth, like 10 

Gb solutions.  

Finally, only configurations 3 and 4 supported ECC 

DRAM memory. Memory is the conduit to the 

processor, and memory errors are on the rise, especially 

for large systems [10, 22]. We view ECC as a 

requirement for any data-intensive computing system.  

Our ideal system would couple a high-end mobile 

processor (like the Intel Core 2 Duo or AMD 
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equivalent) with a low-power chipset that supported 

ECC for the DRAM, larger DRAM capacity, and more 

I/O ports with higher bandwidth. 

6 Conclusions 
Our results from small clusters demonstrate that 

systems built using high-end mobile processors and 

SSDs are the most energy-efficient system for data-

intensive cluster computing across all the applications 

we tested. We compared systems across the spectrum of 

available hardware, including systems advocated by 

other researchers proposing solutions to this problem 

[19]. A concern with ultra-low-power embedded 

systems is that the chipset and peripherals can dominate 

the overall power usage, making these systems less 

energy-efficient than their processors alone. Our results 

also show that the successive generations of server 

systems are becoming more energy-efficient, as we 

expected. We were able to use single-threaded and 

single system benchmarks to filter the systems down to 

a tractable set in order to run a variety of large-scale 

benchmarks. The initial benchmark results were 

consistent with the data-intensive benchmark results. 

Moving forward, we expect that embedded processor 

systems will be overpowered by their I/O subsystem 

requirements for data-intensive applications in the near 

future. Furthermore, by optimizing the chipset and 

peripherals, even more energy-efficient systems can be 

built for this application space. These systems will use 

less power, reducing overall power provisioning 

requirements and costs. 

Finally, there is a large body of future work that we 

would like to pursue. First, we would like to use OS-

level performance counters to facilitate per-application 

modeling for total system power and energy. 

Furthermore, we know of no standard methodology to 

build and validate these models. Likewise, developing 

standard metrics and benchmarks will make these 

comparisons easier in the future. These are essential for 

a framework that includes standardized metrics and 

benchmarks for system comparison. 
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