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Abstract—Studying the energy efficiency of large-scale computer systems requires models of the relationship between 
resource utilization and power consumption.  Prior work on power modeling assumes that models built for a single node will 
scale to larger groups of machines.  However, we find that inter-node variability in homogeneous clusters leads to substantially 
different models for different nodes. Moreover, ignoring this variability will result in significant prediction errors when scaled to 
the cluster level. We report on inter-node variation for four homogeneous five-node clusters using embedded, laptop, desktop, 
and server processors. The variation is manifested quantitatively in the prediction error and qualitatively on the resource 
utilization variables (features) that are deemed relevant for the models. These results demonstrate the need to sample multiple 
machines in order to produce accurate cluster models. 

——————————   !   —————————— 
1 INTRODUCTION

OWER consumption is a major concern in the design 
and operation of large-scale computing facilities [2].  
It also presents a modeling and instrumentation chal-

lenge to researchers and infrastructure providers. 
Physical instrumentation alone is not sufficient for 

challenges such as attributing power consumption to vir-
tual machines, predicting how power consumption scales 
with the number of machines, and predicting how chang-
es in utilization affect power consumption. These tasks 
require accurate models of the relationship between re-
source usage and power consumption. Furthermore, 
measurement adds significant cost to the system. 

A substantial body of literature models power con-
sumption by sampling various metrics available in soft-
ware (CPU utilization, memory bandwidth, disk utiliza-
tion, etc.) and fitting them to the measured system-level 
power consumption of a node.  (Note that we use the 
terms node and machine interchangeably.) However, most 
of this previous work has built and validated models for 
individual nodes, with the implicit or explicit assumption 
that these models would extrapolate to the cluster level 
and beyond.  

In this paper, we test that assumption by building 
node-level and cluster-level power models for four ho-
mogeneous clusters running MapReduce-style applica-
tions.  The clusters include components from the embed-
ded, mobile (laptop), desktop, and server processor spac-
es, reflecting energy-efficient server recommendations 
from recent research [1], [9], [13], [26] as well as tradition-
al servers prevalent today. 

Our results clearly demonstrate that single-node pow-
er models do not scale to the cluster level:  
! We show that the model correlates (or model fea-

tures) chosen for single-node models by a standard 
feature selection process vary across individual nodes 

in a homogeneous cluster. 
! We further show that, for a given set of features, the 

coefficients of a fitted single-node model are highly 
sensitive to the particular node. 

We observe that node-to-node variation is distinct 
from, and an order of magnitude higher than, run-to-run 
variation on these four clusters. Manufacturing variation 
among "identical" components has been documented by 
others [18], [21]. Our goals are two-fold: (1) document this 
variability at the cluster level and (2) present an approach 
to build cluster power models that tolerates variability. 

2 RELATED WORK 
Previous studies model the power consumption of single 
nodes using different predictors and modeling techniques 
[3],[4],[12],[14],[23],[24],[25].  Some studies predict power 
consumption based only on CPU utilization [7], [19], 
while others use board-level measurements [16].  The 
modeling techniques also vary in complexity, from simple 
lookup-based models [22] to chaotic attraction predictors 
[16].  These studies all build and validate models on a 
single node, assuming that these models can be applied to 
other identically configured nodes without requiring re-
fitting.  We challenge that assumption in this work. 

Other studies use different validation techniques.  Li 
and John validate their routine-specific models on a full-
system simulator [17], which again assumes no inter-node 
variability.  Vasan et al. present power measurements 
from a medium-scale datacenter but only build single-
node models [27].  Heath et al. model the total power of 
an eight-node heterogeneous cluster on a single workload 
that exhibits little dynamic variation; their work does not 
address the question of scaling the model to include addi-
tional nodes [10].  Lang and Patel model the energy, ra-
ther than the instantaneous power, of a 24-node cluster 
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[15]; it is unclear whether they do so by scaling the meas-
ured power consumption of a single node. Finally, Fan et 
al. scale a single-node, CPU utilization-based power 
model to a few hundred servers [8].  However, they must 
add a large constant offset to the predicted power, which 
compensates for the constant power consumption of net-
working equipment as well as inter-node variations in 
idle power.  They do not separate these two components 
of the added offset. 

Manufacturing variation in power among "identical" 
hardware components, which is the central challenge of 
this paper, has been well documented [21], [18]. 
McCullough et al. also show that power variation among 
cores in a multicore CPU can harm the accuracy of power 
models. However, they do not examine the question of 
how to make models tolerant of variation, and they do 
not look beyond a single node [18]. 

3 SYSTEM OVERVIEW 
We build models for four homogeneous five-node clus-
ters running data-intensive, MapReduce-style applica-
tions.  In this section, we describe the hardware plat-
forms, the software infrastructure, and the workloads 
used to build large-scale power models. 

3.1 Hardware Infrastructure 
Our systems have different CPU dynamic voltage and 
frequency scaling (DVFS) capabilities, which affects the 
resulting power models. Table 1 lists the features of these 
systems. Starting at the low end, the Atom N330 proces-
sor does not provide DVFS at all. This cluster also has the 
smallest dynamic power range, on the order of 15W over 
the entire cluster. On the other hand, the mobile- and 
desktop-processor-based systems both use DVFS. For 
these two systems, the two cores on a single node report 
the same operating frequency 99.8% of the time for our 
workloads. Finally, the server-class system has the ability 
to have the cores operate in different p-states (frequency), 
and can transition the system into the C1 idle state when 
all processors are idle. For our workloads, the frequencies 
of the cores on a single server node differed up to 12% of 
the time. 

Each machine reads its own power measurements over 
a USB port. The power meters have an error of 1.5%. We 
verified the meter calibration, but we leave the explicit 
extraction of meter error for future work. 

3.2 Software Infrastructure 
Each system runs Windows Server 2008 R2, which 

provides a standardized OS-level performance counter 
interface. We measure a wide range of Event Tracing for 

Windows (ETW) performance counters provided by the 
OS. For each machine, we collect metrics, at 1 Hz, relating 
to the processor, memory, physical disk, process, job ob-
ject, file system cache, and network interfaces [20]. Over-
all, we collect approximately 250 counters per node. Sta-
tistically redundant counters are removed through a sys-
tematic feature selection process, described in Section 4.1. 
We also verified that the data collection process does not 
interfere with program behavior or power consumption. 
Table 2 lists the final subset of performance counters used 
by the various cluster models (6-8 counters per model); 
see [6] for more details on model feature selection. 

We ran an assortment of distributed workloads using 
the Dryad and DryadLINQ application framework [11]. 
These workloads are diverse; some are CPU-intensive, 
while others are dominated by disk and network. We run 
a single instance of each application at a time, five times 
per cluster to allow each node to act as the job scheduler, 
which provides diversity in the work done even for the 
same application. One machine acts as the job manager, 
and the other four machines compute the tasks from the 
task graph. The workloads used are described below: 
! Sort: sorts 4GB of data with 100-byte records. The 

data is separated into 20 partitions, distributed ran-
domly across the cluster. All of the data must first be 
read from disk and ultimately transferred back to 
disk on a single machine, so this workload has high 
disk and network utilization. 

! PageRank: runs a graph-based page ranking algo-
rithm over the billion-page ClueWeb09 dataset [5], 
spread over 80 partitions on a cluster. It is a 3-step job 
in which output partitions from one step are fed as 
inputs to the next step. Thus, PageRank has high 
network utilization. 

TABLE 1 
PLATFORMS FOR FULL-SYSTEM POWER MODELING 

(* = Maximum memory capacity of the system) 
System Class CPU Memory Disk(s) OS, FS 

Embedded Intel Atom, dual-core, 1.6 GHz, 8W TDP [26] 4 GB DDR2-800* 1 Micron SSD Windows 
Server 2008 R2, 

NTFS 

Mobile Intel Core 2 Duo, dual-core, 2.26 GHz, 25W TDP [13] 4 GB DDR3-1066* 1 Micron SSD 
Desktop AMD Athlon, dual-core, 2.8 GHz, 65W TDP [9] 8 GB DDR2-800 1 Micron SSD 
Server AMD Opteron, quad-core, 2.0 GHz, 50W TDP 32 GB DDR2-800 2 10K RPM SATA 

TABLE 2 
ETW PREDICTORS USED IN CLUSTER POWER MODELS 

Category Performance counter Ctr. ID 

Memory (Mem) 

Page Faults/sec 18 
Cache Faults/sec 24 
Pages/sec 26 
Pool Nonpaged Allocs 34 

Physical Disk (PD) Disk Total Disk Time % 54 
Disk Total Disk Bytes/sec 66 

Process (Proc) Total IO Data Bytes/sec 99 
Processor (uP) Total Processor Time % 102 

File System Cache (FSC) 

Data Map Pins/sec 121 
Pin Reads/sec 122 
Copy Reads/sec 126 
Fast Reads Not Possible/sec 139 
Lazy Write Flushes/sec 140 

Job Object Details (JOD) Total Page File Bytes Peak 167 
Proc. Perf. (MHz) Processor_0 Frequency 209 
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! Prime: checks primeness of approximately 1,000,000 
numbers over 5 partitions in a cluster. It has high 
CPU usage but little network traffic. 

! WordCount: reads through 50 MB text files on 5 par-
titions in a cluster and tallies the occurrences of each 
word. It has little network traffic. 

4 MODEL AND MACHINE VARIABILITY 
In this section, we demonstrate the variation in feature 
selection and model coefficients across “homogeneous” 
nodes. We also show the impact on accuracy of scaling up 
a single-node model and compare it to model creation 
based on a sample of multiple nodes. 

4.1 Model Creation and Feature Variability 
We evaluated four classes of power models: linear, 
piecewise linear, quadratic, and switching. For brevity’s 
sake, we present only the best linear models for each clus-
ter. The overall predicted cluster power is the sum of the 
single-machine models built using the metrics from each 
machine (1). 

  
The challenge was to produce a single-node model that 

provides the lowest root-mean-squared error across all 
workloads on the cluster. We report this error as a per-
centage of the cluster’s dynamic power range; we refer to 
this metric as dynamic range error (DRE).  Equation (2) 
gives the formula for DRE. 

  
Equations (3) through (6) below show the final features 

for each cluster-specific model. Power is denoted by y, 
and xi denotes the features measured on each machine. 
We collect data of the form <y, x1,…,xn>, and we fit func-
tions  so that  approximates y, minimiz-
ing some loss function. The numeric subscripts refer to 
the counter IDs in Table 2. 

       (3) 
                      (4) 

                (5) 
   (6) 

Our previous work [6] provides details on which per-
formance counters are significant for each individual 
node and each workload for all the benchmarks. The fea-
ture selection heuristic is presented for the clusters based 
on the sum of an individual node’s significant features.  
We found there to be considerable variation in features 
selected by a model across different nodes in the cluster.  

4.2 Coefficient Variability and Overall Accuracy 
With the model features selected, we built single-node 

power models for each cluster and used two different 
methods to scale these models to predict cluster power. 
We estimate the cluster-level power models’ error using 
five-fold cross validation using training data from all the 
workloads. The training and test runs vary based on what 
input data runs on which node in the cluster.  

The first strawman method used to predict cluster 
power was to build a model to predict the power of a sin-  

Fig. 1. Sensitivity to the machine(s) used to train cluster models. 
Column labels identify the node(s) used in training. 

 
gle node, and then simply multiply this predicted power 
by the number of nodes in the cluster. Unsurprisingly, 
this method was highly inaccurate, yielding worst-case 
dynamic range errors of up to 150%. 

The second method collects performance counter data 
from all nodes and applies the single-node model to each 
node in turn, summing the predictions. Fig. 1 shows the 
results of this method. For each cluster, columns n1 
through n5 show the dynamic range error when the clus-
ter models are trained using data from only one node 
(each of nodes 1-5) and then applied to all nodes. The 
remaining columns show models trained using data from 
subsets of the five nodes (i.e. n12 is a model trained on 
nodes 1 and 2 and applied to the entire cluster). Using 
data from multiple machines is far superior to simply 
scaling a single node’s power, decreasing the worst-case 
error to only ~50% for the Embedded cluster compared to 
~150% when multiplying a single node’s predicted power 
by N, the number of machines modeled in the cluster. 

As Fig. 1 shows, the machine power model trained us-
ing a particular node was sometimes a good proxy for 
cluster power model coefficients, while in other cases it 
was not. In general, as we added more machine data from 
different nodes of the cluster to train the model and de-
termine the feature coefficients, the accuracy of the linear 
model improved, reducing worst-case error from ~50% 
down to less than 20% for the Embedded cluster and 10% 
for the other clusters. Using quadratic models, the worst-
case DRE went down to 12% for the Embedded cluster 
running WordCount or 1% absolute median error. Pag-
eRank was the worst-case absolute median error was 
5.7% on the Desktop cluster (9% DRE). All other absolute 
median errors were 3.7% or less.  

For large-scale data centers, it is impractical to train the 
model with all the machines in the data center. In our 
prior work [6], we formally derive the number of ma-
chines that must be sampled to meet a given error bound 
based on the measured power difference across machines. 

Application inter-run variation 
We also compared the run-to-run variation in idle 

power of the individual nodes to the machine-to-machine 
variation in idle power in the cluster. The inter-run idle 
power range for a single node was as much as an order of 
magnitude smaller than, and never larger than the cluster 
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idle power range. These results, shown in our prior work 
[6], demonstrate that multiple application run measure-
ments on the same node are not sufficient to capture the 
inter-node variability that we have observed on the server 
cluster. 

Meter error vs. measured power ranges 
The Watts-Up Pro meter error is reported as 1.5%. When 
looking at the idle, average, and maximum power ranges 
across all the clusters and benchmarks, only the measured 
ranges for the Opteron cluster is less than ±1.5% of the 
possible meter error. All other clusters report measured 
power ranges greater than the meter error for at least one 
application on the cluster. The error ranges have been 
omitted for brevity. Simply using measurement error 
does not capture machine variability for all the clusters.  

5 CONCLUSIONS 
Previous work assumes that it is sufficient to build and 

then scale a single-node power model for each system 
class of interest.  For high-fidelity cluster power models, 
our results show that the choice of model predictors will 
vary from node to node. Furthermore, even for a given set 
of predictors, inter-node variability will result in different 
model coefficients when models are fit using data from 
different individual nodes. As one would expect, these 
variations in single-node models result in larger errors 
than using multiple nodes to train the models for predict-
ing cluster-level power consumption. 

We also observed greater inter-node measured power 
variation than run-to-run variation on a single node, re-
quiring models based on a sample from the population of 
machines. Although not presented here, the number of 
machines to sample is independent of the machine popu-
lation size and given reasonable parameters is on the or-
der of a single rack of machines or less [6]. 

Finally, the combination of the portable (across differ-
ent machine types) ETW framework, feature selection 
heuristic, sampling bounds, and standard statistical 
methods provides a methodology that can be easily ap-
plied to new clusters composed of different systems 
and/or new workloads to generate high-fidelity full-
system cluster power models. 
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