
CHAOS: Composable Highly Accurate OS-based Power Models

John D. Davis†, Suzanne Rivoire‡, Moises Goldszmidt†, Ehsan K. Ardestani§
† Microsoft Research, Silicon Valley

‡ Dept. of Computer Science, Sonoma State University
§ Dept. of Computer Engineering, University of California Santa Cruz
{joda, moises}@microsoft.com, rivoire@sonoma.edu, eka@soe.ucsc.edu

Abstract—Models of computers’ power consumption en-
able a variety of energy-efficiency optimizations and reduce
data center instrumentation costs. In this paper, we present
Composable, Highly Accurate, OS-based (CHAOS) full-system
power models for machines and clusters. CHAOS models,
which use high-level OS performance counters, yield highly
accurate predictions without the intrusiveness and portability
problems of hardware counters or board-level instrumentation.
Furthermore, they are automatically generated by a low-
overhead software framework (less than 1% CPU utilization
on a mobile-class processor).

We evaluate CHAOS models using MapReduce-style work-
loads, executed on server-class systems as well as energy-
efficient low-power desktops, laptops, and embedded systems.
We also generate and validate a generic, cross-platform feature
set for cluster power models. To facilitate comparisons across
different models and platforms, we define a metric called
Dynamic Range Error (DRE) to describe how well the model
characterizes the dynamic system behavior. Using this metric,
we quantify the tradeoffs between model complexity and
accuracy for different workloads. Our results show that the
generic cross-platform feature set degrades prediction accuracy
by at most 1% DRE compared to power models using the best
cluster-specific feature set. To the best of our knowledge, this
is the most complete study of system power modeling covering
such a wide variety of platforms, workloads, and models.

I. INTRODUCTION

Power consumption is a first-order design constraint in
the data center (DC). Power infrastructure accounts for
approximately 80% of data center facility costs and about
40% of operating costs [1], thus motivating techniques for
power provisioning and planning, online power capping,
and power-aware software tuning. All of these optimizations
benefit from accurate models of computer systems’ power
consumption. Depending on the application, power models
can exist as a complement to physical power measurement
instrumentation or as a cost-saving replacement for it. Full-
system power models are particularly useful for legacy
systems and for new low-cost server designs, like the Open
Compute Project, that cannot monitor server-level power
consumption [2]. Furthermore, data centers are well suited
for application-targeted power models because they repeat-
edly run large-scale batch applications, such as search index
updating and analytics. To be suitable for large-scale use,
power models require generic, portable predictors that are (1)

highly accurate for emerging server designs and workloads
and (2) can scale beyond a single machine.

In this paper, we build composable, highly accurate OS-
based (CHAOS) power models for online use. At the core
of CHAOS is a set of automatically generated full-system
power models. These models accurately predict power based
only on portable OS-level performance counters, requiring
no hardware-based instrumentation. OS-level performance
counters are easy to collect and consistent across multiple
platforms (portable), and they can be collected in real time
for online power prediction. Furthermore, our modeling
techniques account for the significant power variability
among identical components and systems [3, 4, 5], which
allows our single-machine models to be accurately expanded
to the cluster level.

To validate our approach, we build machine-level power
models and then use them to compose cluster-level power
models for six different clusters of homogeneous machines
and one heterogeneous cluster. We also use our technique to
identify a set of model features across all clusters that also
yields high fidelity, pushing the model’s validity beyond a
single application to a group of applications with high CPU,
network, and/or disk utilization. In order to conduct this
model exploration, we build and evaluate over 1200 full-
system power models per cluster using different combina-
tions of predictors and modeling techniques.

The machines that make up the clusters span the em-
bedded, mobile, desktop, and server processor spaces, re-
flecting energy-efficient server recommendations from recent
research [6, 7, 8, 9, 10] as well as more traditional servers
used in current practice. Our workloads are a variety of
MapReduce-style applications running the same software
stack. Figure 1 shows the total cluster-level AC power
consumption of these workloads over five runs on our
mobile-class cluster. Although the power signatures of these
workloads differ greatly due to differing application charac-
teristics, we seek to accurately predict their power using a
single cluster power model.

To demonstrate the portability and generality of CHAOS’s
full-system power modeling framework, we make the fol-
lowing contributions:
• We demonstrate an automatic, generic framework that

builds composable, high-fidelity cluster power models

978-1-4673-4532-3/12/$31.00 ©2012 IEEE

WordCountPageRankPrime Sort
P

o
w

er
 (

W
)

1
2

0
2

0
0

2
2

0

Time (min)
20 10550 2010 3010

Figure 1. Full-system cluster power measured from 5 Intel Core 2 Duo machines for five runs of each workload. Each workload has different run times
and dramatically different power signatures, with dynamic power ranges between 120W and 220W.

using portable OS-level performance counters. This
approach has the following advantages:

– Accuracy: Our models’ error is less than 12%
of the dynamic power range of our machines, a
stricter error measure than prior work has used.
The median absolute error ranges from 0.5-2.5%,
which is on par with the most accurate prior work.

– Portability: We use the same OS-level performance
counter infrastructure to build our power mod-
els across six different platforms composed of
different processor types from different vendors.
The overhead of the power modeling is less than
1% CPU utilization and requires no specialized
hardware.

– Scalability: Our models are able to account for
server-level power variability in the feature se-
lection process and in the number of machines
sampled to achieve a given error bound.

• We define and evaluate a new model error metric called
Dynamic Range Error (DRE), which is based on the
mean squared error and the dynamic power range of
the system. This metric yields a more appropriate basis
for cross-platform comparison than currently used error
metrics.

• We show the relationship between model complexity
and accuracy for different workloads and present a
general set of predictors that yield accurate models
across the different clusters.

The rest of this paper is organized as follows. Section II
provides a description of related work. Section III describes
our clusters, workloads, and measurement infrastructure.
Section IV explains our feature selection process and mod-
eling techniques. Section V evaluates the power models
and discusses insights and intuitions for high-level power
modeling, and Section VI concludes.

II. BACKGROUND

In this section, we examine previously proposed ap-
proaches to modeling full-system power and energy con-
sumption. First, we categorize their results with respect to

accuracy, portability, and scalability. Then, we categorize the
models themselves with respect to the predictors used, the
types of models, and the frequency of sampling. However,
we do not discuss power modeling of individual components,
such as CPUs, for several reasons. First, the goals of those
models tend to be different: the threshold for accuracy
is higher, the sampling frequency often must be higher,
and generality and portability are sacrificed. Second, those
models are typically much more fine-grained and detailed
than is possible at the full-system level. Furthermore, even
if it were possible to accurately model the power of each
individual component, the full-system power goes beyond
the superposition of components. It also includes “glue” such
as power regulators, power supply inefficiency, chipsets, and
a variety of other elements that contribute to both static and
dynamic power. This makes techniques for modeling full-
system power more high-level and less exact than individual
component power.

Accuracy. Comparing model accuracy against previous
work, which was evaluated on different platforms, is difficult
because of the metrics that are typically used. In some
papers, the only metric of accuracy is that the model was
sufficient for some energy-saving technique [11, 12]. Other
papers use metrics such as absolute error in watts [13] or
mean or median relative error [4, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24]. However, these errors are reported relative
to total power rather than the dynamic power range, which
means that they will appear more accurate for systems with
relatively large idle power and/or small dynamic ranges. This
makes it difficult to understand how well the model captures
variation in power. Based on our results with a tighter error
metric, our modeling approach yields models at least as
accurate as any previously proposed generalizable approach.

Portability and scalability. Some models require
application-specific profiling [14], while others were
developed solely for processor-intensive workloads [16].
Rivoire et al. compared simple models for a breadth of
machines and workloads but did not go beyond a single
machine [17]. In fact, very few papers have examined
the power consumption of a group of machines. Those

Table I
WE DEVELOP FULL-SYSTEM POWER MODELS FOR 5-MACHINE CLUSTERS OF THE PLATFORMS BELOW. *SYSTEM MAXIMUM MEMORY CAPACITY.

System Class CPU, TDP Power Range Memory Disk(s) OS, FS

Embedded Intel Atom, 2-core, 1.6 GHz, 8W 22-26 W 4 GB DDR2-800* 1 Micron SSD
Mobile Intel Core 2 Duo, 2-core, 2.26 GHz, 25W 25-46 W 4 GB DDR3-1066* 1 Micron SSD Windows Server
Desktop AMD Athlon, 2-core, 2.8 GHz, 65W 54-104 W 8 GB DDR2-800 1 Micron SSD 2008 R2,
Server AMD Opteron, 4-core, dual socket, 2.0 GHz, 50W 135-190 W 32 GB DDR2-800 2 10K RPM SATA NTFS
Server Intel Xeon, 4-core, dual socket, 2.33 GHz, 80W 250-375 W 16 GB DDR2-667 4 7.2K RPM SATA
Server Intel Xeon, 4-core, dual socket, 2.67 GHz, 80W 260-380 W 16 GB DDR2-667 6 15K RPM SAS

papers have focused on a particular machine or application
and have not formally analyzed the process of scaling up
a model developed on a single machine like this work
has [4, 14, 25].

Choice of predictors. Early power models were based
solely on CPU utilization [25, 15, 18, 11] or even CPU
frequency state [12]. Subsequent work uses board-level
measurements [13, 21] or hardware performance counters
to capture the behavior of CPU, memory, and I/O de-
vices [12, 19, 22, 23, 20]. Our framework uses only OS-
level performance counters, avoiding the intrusiveness of
board-level measurements and the correctness and portability
problems of hardware performance counters [26, 27].

Choice of power modeling techniques. Most previous work
has used linear models [25, 15, 28, 13, 17, 24], piecewise
linear models [16], or models that do not capture interaction
between predictors [12]. Our work shows that more complex
modeling techniques and robust feature selection are needed
to capture the behavior and power variability of data center
workloads on more recent machines using only portable OS-
level metrics. However, Lewis et al.’s recent work found
that even Multivariate Adaptive Regression Splines (MARS)
models were inadequate to capture the behavior of the
systems they studied, so they used chaotic attraction predic-
tors [21]. We found MARS to be adequate, but the difference
between our studies may be the choice of predictors; it is
not clear whether they explicitly use processor frequency as
a predictor or whether the model must infer it.

Sampling frequency. A sampling frequency of 1 Hz is
common in the literature, since many power meters and OS
event interfaces do not support faster sampling. Recent work
shows that this sampling rate does not capture short power-
supply-induced spikes; modeling these spikes requires sam-
pling at every invocation of the OS scheduler [18]. The
inability to model these spikes is a limitation of less intrusive
models, including ours. At the other extreme, some models
have used 10-minute intervals [25] or modeled total energy
over a workload [29, 23, 20], which misses application-level
behavior patterns [30].

III. INFRASTRUCTURE

We evaluate the cluster power models across six ho-
mogeneous clusters with embedded-, mobile-, desktop-,
and server-class processors and a heterogeneous cluster of

mobile- and server-class processors, using a diverse set of
data-intensive workloads; these clusters are further described
in Table I. Although this infrastructure is specific to a
Windows environment, it is publicly available [31, 32].
Furthermore, our approach is general and applicable to other
operating systems with similar software tracing mechanisms.

A. Hardware and workload details

Our systems have different CPU voltage and frequency
scaling capabilities, which affects the resulting power mod-
els. Starting at the low end, the Atom N330 does not
provide dynamic voltage and frequency scaling (DVFS) and
has the smallest dynamic power range. On the other hand,
the mobile- and desktop processor-based systems both use
DVFS, with the two cores in a system reporting the same
operating frequency 99.8% of the time for our workloads.
Finally, the server-class systems have the ability to have
the cores operate in different P-states (frequency), and can
transition the system into state C1 (processor frequency is
0 MHz), when all processors are idle. During our workload
runs, Core 0 had a different operating frequency than at
least one of the other cores up to 12%, and 20% of the time
for the Opteron- and Xeon-based servers, respectively. This
allows us to use one core’s frequency as a proxy for all cores.
Finally, we constructed a heterogeneous cluster comprised
of Intel Core 2 Duo and Opteron servers as a final test of
cluster power model composability.

We run an assortment of distributed MapReduce-style
workloads using the Dryad and DryadLINQ application
framework [33, 30]. All of the workloads are multithreaded,
which fully utilizes all the cores in the system at some point
during the workload run. Some of the workloads are CPU-
intensive, while others are dominated by disk or network. We
use different training and test data sets. Furthermore, even
for the same data set, different machines may operate on
different data partitions depending on the non-deterministic
task scheduler. Training and model building requires up to 2
hours, depending on the cluster. This process can be incorpo-
rated into the normal system evaluation and characterization
phase and thus can be done using a small collection of
machines [3], removing or augmenting instrumentation from
the install base in a data center. The workloads used are:
• Sort. This workload sorts 4 GB per machine of data

with 100-byte records. This workload has high disk and
network utilization.

• PageRank. This workload runs a graph-based page
ranking algorithm over the ClueWeb09 dataset [34], a
corpus of about 1 billion web pages. PageRank has high
network utilization.

• Prime. This workload checks for primeness of each
of approximately 1,000,000 numbers on each of 5
partitions in a cluster. This workload is CPU-intensive
and produces little network traffic.

• WordCount. This workload reads through 500 MB text
files on each of 5 partitions in a cluster and tallies the
occurrences of each word that appears. It produces little
network traffic or disk activity.

Each workload has a dramatically different cluster-level
AC power consumption profile. Our automatic power model
generation framework builds a single machine power model
that can be used in a cluster context despite machine-to-
machine power variation and multiple different workloads.

B. Measurement infrastructure

The measurement infrastructure consists of a hardware
component that physically measures total system power
and the software components that collect both the power
measurements and OS-level performance counters logged
by ETW (Event Tracing for Windows) [31]. We collect data
every second. This frequency is capable of measuring power
spikes in the data center, which can happen on the order of
a minute [35].

Hardware: Every machine in every cluster is individually
instrumented with a power meter. We use the WattsUp? Pro
digital power meter to capture the wall power once per
second. Each machine reads its own power measurements
over a USB port. The power meters have an error of 1.5%.
We verified the meter calibration and compared different
power meter readings across different machines. Machine-
to-machine power variation can be as high as 10% at idle
or under load.

Software: Each system runs Windows Server 2008 R2,
which has a convenient and standardized OS-level perfor-
mance counter interface and tool suite. We use Windows
Perfmon to log software counters once per second, including
the WattsUp? Pro power meter readings [32].

IV. MODELING METHODS

The OS provides a high-level view of system resource
utilization and exposes performance counters, which can
be observed and collected with a low-overhead tracing
framework like ETW [31]. We explore various modeling
techniques to capture the correlation between full-system
power and these OS-level performance counters. Because
these models are intended for online deployment, we favor
simplicity in both the number of features and in the modeling
techniques in order to minimize computational overhead
whenever possible.

The first step in the process of building our models
is feature selection, or identifying a subset of the many
performance counters to use for modeling power. Windows
Server 2008 exposes approximately 10,000 different system
performance counters, and our objective is to reduce the
number of counters to 10-20. Reducing the number of
features reduces the overhead of collecting counters and
computing predictions, and it also increases the robustness
of the model to outliers and overfitting. To this end, we
combined a set of well-known feature selection techniques
and algorithms, resulting in the final algorithm and feature
sets described in Section IV-A.

The second step is to fit a model to the selected features.
In Section IV-B, we discuss the techniques we use to build
power models for each cluster based on the chosen feature
set. We use four different modeling techniques of varying
complexity.

A factor we took into account in our methodology is varia-
tion in power consumption from machine to machine, which
can be significant [3, 4, 5]. Most previous work assumes that
a model built for a single machine can be generalized to a
cluster of homogeneous systems [14, 25, 17, 24]. However,
both the initial choice of features and the model coefficients
associated with those features may significantly differ de-
pending on the individual machine [3]. Our techniques for
both feature selection and model fitting include steps to
account for this machine-to-machine variation and build a
model that can be accurately applied across the entire cluster.
In both techniques, we incorporate variability by pooling
information from individual machines in the cluster. In the
case of feature selection, described in Section IV-A, our
algorithm is based on the union of all the significant features
from all the machines in the cluster. In the case of model
fitting, described in Section IV-B, we pool performance
counters and power measurements from all the machines in
the cluster. An alternative approach is to build hierarchical
Bayesian or mixed models [36]. This alternative adds an
extra level of complexity in the modeling, the statistical
fitting algorithms, and in the inference/prediction process.
Fortunately, according to the results of the recommended
statistical tests in [36], comparing the variances in the
different models, pooling is a suitable approach with no
significant loss of accuracy.

A. Feature selection

Current measurement infrastructure enables the collection
of a large number of features – in our case over 10,000. This
is a trend that seems only to be increasing. Our first task
is therefore to explore methods for automatically extracting
those features that are most relevant to the modeling of
power. To this end, we will rely on Algorithm 1 and on well
established regression techniques that are geared towards
extracting the most relevant covariates (regressors/features)
from regression problems with a large number of variables.

Algorithm 1 Feature reduction used to produce the cluster-
specific model feature set.
Input: Correlation matrix and feature definitions

1: if (Step 1) Correlated features: (a = ab) > 0.95 then
2: Remove feature b
3: end if
4: if (Step 2) Co-dependent feature: (a = b+ c) then
5: Remove features a and b
6: end if
7: while Insignificant model features (f) do
8: (Step 3) Remove fi where

fi =
∑

αjfj , i 6= j, for colinearity test

9: (Step 4) Build new machine power model
10: end while
11: for (Step 5) Each significant model feature across all machines (m)

and applications do
12:

fi =
∑

mjfi

13: end for
14: while (Step 6) Insignificant cluster model features (cf) do
15: Remove fi where

cfi =
∑

αjcfj , i 6= j, for colinearity test

16: Build new cluster power model
17: end while

These techniques are L1 regularization and stepwise regres-
sion. The benefits of reducing the number of model features
needed are: economy on data collection, the models induced
are more robust to noise and outliers, and easier to interpret.

We began by identifying a subset of OS performance
counters related to the activity of various hardware and
OS components. The result was a set of approximately
250 counters taken from the following categories: processor,
memory, physical disk, process, job object, file system
cache, and network interfaces [37]. Different combinations
of these features will capture the behavior of different
platforms and workloads; there is no single optimal feature
set that holds across all possible systems. Therefore, our
strategy consists of developing an automated framework that
can rapidly and easily build new models for applications,
thus adapting to new characteristics and workloads.

Our initial, naı̈ve strategy was to combine the counters
from all machines in the cluster into a single set and then
use regression techniques to identify the most significant
features across the combined data. The problem with this
approach is that, for our MapReduce-style workloads, the
behavior of the different machines in the cluster is highly
correlated. In this situation, statistical regression algorithms
will, in an attempt to be parsimonious, end up eliminating
one or more machines from the feature set entirely. This
resulted in fragile workload-specific and even run-specific
models that failed in the presence of small variations.

Therefore, we instead chose the strategy of separately

building models for each machine in the cluster, and then
iteratively selecting from the union of relevant features
across the models to create an abstract machine-level model
that captures all of the machines in the cluster. In Sec-
tion IV-A1, we explain this feature selection algorithm, and
in Section IV-A2, we present the features that were selected
for different platforms and workloads.

1) Feature selection algorithm: The final procedure con-
sists of six steps, outlined in Algorithm 1.

In steps 1 and 2 of the algorithm (lines 1-6 in Algo-
rithm 1), we eliminate correlated counters from the feature
set, since the presence of correlated counters tends to ar-
tificially inflate coefficients in the resulting models [38].
In step 1, we compute the features’ pairwise correlation
matrix across all workloads and reduce groups of features
that have pairwise correlations greater than |0.95|, removing
about 80 features. We performed a sensitivity analysis on
this threshold value and found that reducing it below 0.95
provided diminishing returns. In step 2, we manually elim-
inate co-linear features based on the performance counter
definitions [37]. After applying these two steps, we reduced
the 250 features down to 50.

In step 3 (line 8 in Algorithm 1), we use a linear regression
fitting with L1 regularization, which bounds the sum of
the coefficients in order to eliminate irrelevant features in
high-dimensional spaces [39]. In step 4 (lines 7-10 in Algo-
rithm 1), we apply stepwise regression; that is, we iteratively
eliminate features for which the Wald significance test [40]
shows a low confidence that their coefficient value differs
from 0. These two steps reduce the number of features to on
the order of 10. Due to machine-to-machine variation, these
steps did not yield the same 10 features for the different
cluster types or even across all machines in the same cluster
and workload.

The final two steps enable feature selection across mul-
tiple machines and workloads in a particular cluster by
dealing with the differences between the machines. In step
5 (lines 11-13 in Algorithm 1), we begin with the union of
the feature sets identified in step 3 for each machine and
workload. We apply a weighted function to each feature
to distinguish between the insignificant features that were
eliminated during the stepwise regression in step 4 and
those that were not eliminated (a weight of 1 for significant
features and 0.1 for insignificant features).

At the end of step 5, we have a histogram of the features
for each cluster, where each bucket contains the feature’s
weighted occurrence count from the different machines
in the cluster. Based on these weighted occurrences, we
use a low threshold to select the feature set for the final
cluster-specific, machine-level model. Step 6 (lines 14-17 in
Algorithm 1) is similar to step 4, except that step 6 uses the
features selected in step 5 and the full cluster data set. We
repeat these steps until no more features can be eliminated,
and then we have a feature set that can be used for each

Table II
SIGNIFICANT PERFORMANCE COUNTERS USED IN CLUSTER POWER MODELS AND A GENERAL FEATURE SET THAT CAN USED ON ALL PLATFORMS.

Category Performance counter Atom Core2 Athlon Opteron Xeon SATA Xeon SAS General

Network Datagram/sec X X

Memory

Page Faults/sec X X X
Committed Bytes X X
Cache Faults/sec X X X X
Pages/sec X X X X
Page Reads/sec X X
Pool Nonpaged Allocs X X X

Physical Disk Disk Total Disk Time % X X X X
Disk Total Disk Bytes/sec X X X X

Process Total Page Faults/sec X X
Total IO Data Bytes/sec X

Processor
Total Processor Time % (Utilization) X X X X X X X
Total Processor Interrupts/sec X
Total Processor % DPC Time X

File System Cache

Data Map Pins/sec X X X X
Pin Reads/sec X X X X X
Pin Read Hits % X
Copy Reads/sec X
Fast Reads not Possible/sec X X
Lazy Write Flushes/sec X X X

Job Object Details Total Page File Bytes Peak X X X X X X X

Processor Performance Processor 0 Processor Frequency X X X X X X

machine in the cluster.
2) Feature selection results: The final, cluster-specific

model features for each platform are shown in Table II.
This process removes feature selection variability across
workloads and machines. It also guarantees that the features
are independent, which is needed to extract stable models
using the techniques described in the next section. Finally, it
reduces the data collection and storage overhead as well as
the computational complexity of the models, making them
less expensive and appropriate for online use.

As Table II shows, different features are selected on differ-
ent systems. In particular, the two Xeon systems, which have
storage subsystems that consume significant dynamic power,
use many more features associated with paging and the
filesystem than the other systems do. None of these features
are individually as significant as processor frequency or
utilization, but together they capture the behavior of the I/O
subsystem.

We also investigated simplifying feature selection by
aggregating all the features from all the clusters and applying
our algorithm again for each cluster across this superset of
features to identify a new set of significant model features.
This led to the “general” column in Table II. After the first
three clusters, we found that adding new cluster feature sets
did not dramatically change the general feature set. This may
remove or simplify the feature selection process for similar
platforms. However, different hardware may necessitate dif-
ferent features; the idea behind the feature selection tech-
nique we present here is to provide an automatic framework
for quickly selecting features and generating robust models
for new platforms.

Finally, Figure 2 illustrates the process of aggregating
individual machines’ features (steps 5 and 6 of Algorithm 1)
for the Opteron cluster. In Figure 2, step 5 of the algorithm
creates the stacked bars per feature across all machines and
workloads for a cluster, where higher bars show counters that
were identified as significant across more combinations of
machines and workloads. As expected, processor utilization
was the most commonly identified feature, and the impor-
tance of different features varied across workloads.

The horizontal line in Figure 2 shows the final threshold
for the Opteron cluster. Features whose weighted occurrence
count was above this line were selected for the model, and
others were discarded. We initially started the threshold at a
weighted occurrence count of 5, and the stepwise regression
(step 6 of the algorithm) moved that threshold up to 7 for
all platforms in our study. Conversely, if no insignificant
features are found, the threshold can be reduced until that
happens, providing a complelety automated feature selection
heuristic.

B. Modeling techniques

We evaluated four different modeling techniques, listed
below in Equations 1- 4, of varying degrees of conceptual
and implementation complexity. In each equation, the full-
system power is represented as a function f̂() of high-
level OS counters represented by (x1, . . . , xn). For each
technique, we also varied the number of model features,
ranging from CPU utilization alone to the full cluster-
specific and general feature sets shown in Table II.

We start with a basic linear regression model (Equation 1),
where the parameters (ai)

n
0 are fitted by minimizing the

0

5

10

15

20

25

1 18 20 24 25 26 33 34 54 66 79 95 99 102

105

106

107

109

121

122

126

129

130

133

135

139

140

143

167

209
W

ei
gh

t O
cc

ur
re

nc
e

#

Performance Counters

Wordcount
Sort
PageRank
Primes
Threshold

Net Memory HDD Process Processor File System Cache JOD MHz

Figure 2. Feature significance across all the workloads and all the machines in the Opteron cluster with the performance counter categories. JOD: Job
Object Detail, see Table II.

squared error. This is the form used by most previous
work [25, 15, 13, 17, 24, 22]. It is a useful baseline against
which we can compare all other proposals for f̂(x1, . . . , xn)
and evaluate the increase in accuracy of more complex
models.

Baseline linear power model:

f̂() = a0 +
∑
i

ai × xi (1)

Piecewise linear power model:

f̂() = a0 +
∑
i

∑
j

ai,j ×Bs
i,j(xi, ti,j) (2)

Quadratic power model:

f̂() = a0 +
∑
i

∑
j

ai,j ×Bs
i (xi, ti)×Bs

j (xj , tj) (3)

Switching power model:

f̂() = I(f)(a0+
∑
i

ai×xi)+(1− I(f))(a′0+
∑
i

a′i×x′i)

(4)
where I(f) = 1 iff xi < threshold; otherwise I(f) = 0.

The piecewise linear power model (Equation 2) provides
an extra degree of freedom. In this model, the parameter s
can be positive (+) or negative (-), and the basis functions
Bs

i,j are hinge functions. B+
i,j(x, t) takes a value of 0 if x = t

and a value of x− t otherwise. Similarly, B−i,j(x, t) takes a
value of 0 if x > t and t−x otherwise. The t thresholds are
called knots and the j indices permit a feature to be responsi-
ble for multiple knots. Fitting these models requires finding
the knots ti,j and the parameters ai,j . To do so, we use
an implementation of the Multivariate Adaptive Regression
Splines (MARS) algorithm [41]. Intuitively, these models
can express that a feature, such as CPU utilization, may
consume different amounts of full-system power based on
different regions of operation. These models are continuous,
like the systems they model. They can model nonlinearity
over the entire operational range, but be linear within each
region.

The quadratic model (Equation 3) is an extension of the
piecewise linear model that introduces nonlinearity within

each segment by letting the basis functions interact. We
restrict this interaction to degree = 2 and use the same
algorithm (and implementation) as in the piecewise linear
case to select knots and fit parameters and to select which
bases would interact.

Finally, the switching model (Equation 4) uses CPU
frequency as the indicator function, I(f); each p-
state/frequency can have its own linear model. The result
is a set of (possibly) different linear models depending on
the clock frequency. Unlike the piecewise model, where the
knots only partition the space for a particular feature, the
switching model’s indicator function partitions the space for
all the features, creating completely separate models for each
frequency state. The switching model is more rigid, even
though it may require more parameters (since we must fit
coefficients for every feature at every frequency state) and
it may have discontinuities at the knots, i.e., the frequency
transitions.

Taking into account power and feature selection variability
in the machine model makes composing cluster power
models trivial, which we validate in the next section. We
model the cluster power by summing the power predictions
for each machine, f̂(x1, . . . , xn), as shown in Equation 5:

Powercluster =
∑
i

f̂i(x1, . . . , xn) (5)

V. EVALUATION

All models are evaluated by using 5-fold cross validation
with a training set about ten times smaller than the test
data set. The training and test sets are taken from separate
application runs, and the models must handle the fact that
the job scheduler partitions the work differently among
machines for different runs.

Table III
AVERAGE MACHINE DYNAMIC RANGE ERROR (DRE) COMPARED TO

TWO OTHER COMMON METRICS: AVERAGE RMSE AND THE PERCENT
ERROR (% ERR = AVERAGE RMSE/ AVERAGE POWER).

Intel Core 2 Duo - Mobile Atom - Embedded
Workloads rMSE % Err DRE rMSE % Err DRE
Primes 2.69 8.7% 14.7% 0.57 2.4% 30.8%
Pagerank 2.74 8.1% 14.7% 0.64 2.6% 19.4%
Sort 2.19 6.7% 12.8% 0.69 2.8% 11.5%
Wordcount 2.22 6.8% 12.5% 0.64 2.6% 22.7%

A. The Dynamic Range Error Metric

Comparing model accuracy across platforms can be diffi-
cult. In prior power modeling work, error metrics have been
confined to standard statistical metrics like mean squared
error or absolute error. However, absolute error terms like
mean squared error (MSE) or median error are difficult to
compare across platforms whose operating power may differ
by orders of magnitude. Presenting these error terms as a
percentage of the total power is common in the literature for
this reason, but it still obscures the fact that the overall power
may contain a large static component, making it trivially
predictable. The real question from a research perspective is
how well the model captures the dynamic variation in power.

Therefore, a more meaningful and stringent error metric
is the dynamic range error (DRE), which we define as the
root-mean-squared error divided by the dynamic range, as
shown in Equation 6. As shown in Table III, a small rMSE,
on the order of 2% of total power, can translate into a large
DRE of 30% for systems using the Atom-based processor,
the system with the smallest dynamic range. Furthermore,
the Core 2 Duo-based systems has a large dynamic range, yet
the other error metrics still overestimate the model accuracy.
Thus, using DRE provides a platform-independent view of
a model’s explanatory power, demonstrating how well the
power models actually model the dynamic range of the
system. Finally, the use of DRE also enables the high-level
results summary shown in figures 3 and 4, which apply both
quantitatively and qualitatively to all workloads and clusters.

DRE =

√
MSE

Powermax − Poweridle
(6)

B. Cluster-specific Model Accuracy

The full-system power is non-linear in CPU utilization.
Therefore a linear model will have to make compromises
and as a result is not able to model the entire dynamic range
of the system, especially at the high end of the range. As a
consequence, the linear model loses accuracy. On the other
hand, the piecewise linear and more complex models cover
the entire dynamic range of the system using knots or other
methods to provide basis functions to enable modeling of the
different power regions, resulting in lower error. Figure 4
quantifies the increase in accuracy moving from simple
linear models to more complex models and their ability to
represent the full dynamic range.

Table IV shows the best average DRE for each platform
and workload. Each entry is labeled with the modeling
technique and feature set that yielded the best result. Overall,
the quadratic model (‘Q’) and cluster-specific features (‘C’)
yielded the best results, with some exceptions. The simplest
models and feature sets only worked well for the simplest
benchmark (WordCount) and the simplest system (the Atom-
based system, which lacked DVFS). Overall, the models are

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

Linear Switching Linear Piecewise Linear Quadratic

A
ve

ra
ge

 D
R

E

Modeling Technique

CPU utilization

CPU utilization and MHz

Cluster specific

General

Model Features

Figure 3. Opteron average DRE for representative workload (Pagerank),
demonstrating that feature selection is required. Note: The quadratic and
switching models do not use the CPU-utilization-only feature set because
they require multiple features.

0%

2%

4%

6%

8%

10%

12%

14%

16%

Linear Switching Linear Piecewise Linear Quadratic

Av
er

ag
e

DR
E

Modeling Techniques

CPU utilization
CPU utilization and MHz
Cluster specific
General

Model Features

Figure 4. Opteron average DRE for representative workload (Prime),
demonstrating that more complex models are required. Note: The quadratic
and switching models do not use the CPU-utilization-only feature set
because they require multiple features.

highly accurate, with DRE less than 12% of the dynamic
power range of the system for all models. Recall that this
is a more stringent error metric than mean squared error or
absolute percentage error, which is less than 2.5% for our
models. These results show that accurate power modeling
does not require low-level counters or instrumentation.

We next examine the question of whether the models’
accuracy is due to feature selection process or the modeling
techniques; the answer turns out to be different for different
workloads. Figures 3 and 4 address this question by showing
the DRE of all combinations of model types and feature
sets on the Opteron for two different workloads. In both
figures, the bars are clustered by modeling technique, and
the different feature sets used to build the models are ordered
from left to right in each cluster. Note that the quadratic and
switching models require multiple features, which means
that the CPU-utilization-only feature set does not make sense
for these models.

Impact of feature selection. PageRank has high network

Table IV
BEST AVERAGE DRE FOR EACH WORKLOAD AND CLUSTER (DRE, MODELING TECHNIQUE AND FEATURE SET). PU: PIECEWISE LINEAR (CPU

UTILIZATION), LC: LINEAR (CLUSTER FEATURES), SC: SWITCHING (CLUSTER FEATURES), QC:QUADRATIC (CLUSTER FEATURES), AND QCP:
QUADRATIC (CLUSTER FEATURES + MHZ(T-1)), QG:QUADRATIC (GENERAL FEATURES).

Workload Atom Core 2 Athlon Opteron Xeon SATA Xeon SAS

PageRank 9.2%, PU 7.4%, QC 8.9%, QC 7.7%, QCP 9.6%, QCP 8.1%, QCP

Prime 10.7%, QC 4.9%, QC 3.6%, QC 2.5%, QC 8.6%, QC 9.9%, QC

Sort 10.2%, QC 7.4%, QC 6.1%, QC 7.9%, QC 11.0%, QG 10.5%, QC

WordCount 11.4%, LC 9.8%, SC 6.0%, QG 7.6%, QC 9.8%, QC 9.2%, QC

utilization and over 800 tasks to run. It has the most power
variation of all the workloads in this study and the longest
running time. Figure 3 shows the dynamic range errors of
various models and model features on the Opteron cluster
running the PageRank workload. As Figure 3 shows, the
DRE of the cluster-specific and general feature sets is up to 5
percentage points lower than that of the CPU-based models,
demonstrating that for this workload, feature selection is
more important than modeling techniques with respect to
accuracy. WordCount exhibited similar behavior.

Impact of modeling techniques. Figure 4 shows that, for
the CPU-intensive Prime workload, the choice of modeling
technique is more important than the choice of feature set.
Using piecewise linear models with one feature dramatically
improves accuracy compared to a linear model. Sort also
exhibited the same modeling behavior.

Heterogeneous clusters. An added benefit of building clus-
ter power models based on a generalized machine power
model is the ability to compose cluster power models for
heterogeneous clusters, essentially for free. To demonstrate
this capability, we constructed a 10-machine, heterogeneous
cluster composed of Intel Core 2 Duo machines and Opteron
machines. We scaled up the test data sets to maintain
constant amounts of data and work per machine in the
cluster. Then, we applied the appropriate machine power
model (Core 2 Duo or Opteron) to each machine, resulting
in the same worst-case 12% DRE as the homogeneous
clusters. Thus, CHAOS power models could be used in a
heterogeneous cluster environment for power capping and
power-aware resource scheduling.

C. Cross-platform Model Accuracy

Ideally, we would be able to identify a unified set of model
features that can be used for all platforms. After building
the various platform-specific models, we noticed that at a
high level, the models shared many features. By selecting
the features that were common across all the models and
adding the most common features from the categories that
were not represented in this set (i.e. repeating steps 5 and 6
in Algorithm 1) for all clusters and cluster-specific features,
we defined a general set of features that can be used across
all platforms. This is the general model shown in Table II.

This model simplifies model and feature extraction and
provides the ultimate portability. Furthermore, the general
feature set model reduced accuracy by less than 1% DRE
in the worst case, and no more than 0.25% DRE excluding
the worst-case outlier. As Figures 3 and 4 demonstrate, the
general-model DRE is on par with the other models. Like-
wise, as Figure 5 shows, the general model can predict the
entire dynamic range of the cluster. In contrast, a strawman
cluster model based on what prior work has suggested for
cluster models — a scaled single-machine linear model that
only uses CPU utilization — does not predict the upper
∼20% of the cluster power.

In general, although we selected workloads with a wide
variety of characteristics: compute-, memory-, disk-, and
network-bound, we do not claim that these general mod-
els are applicable for any and all workloads that run on
this hardware. This is the main motivation for the auto-
mated model generation framework that can generate new
workload-specific or multi-workload power models.

Single Machine Linear Model (CPU)

Measured Power Cluster quadratic model (general)

P
o

w
er

 (
W

)

Time (s)
0 200 400 600 800 1000 12002

5
0

3
0

0
3

5
0

4
0

0
4

5
0

5
0

0

Figure 5. Worst-case full-system power prediction for the desktop (Athlon)
cluster using a single machine linear power model compared to the cluster
quadratic model using the general feature set. Note the upper region of the
graph where the linear model cannot predict power.

D. Discussion

Together, figures 3 and 4 demonstrate that more complex
models are required and that feature selection matters to
produce high-fidelity models that can be applied across
the collection of workloads. We have pushed this process
further by also using the same technique to generate a
general feature set for these workloads across all the plat-
forms. In the future, as more power management options

become available, feature selection will continue to be im-
portant. Likewise, power management and the quest for more
power/energy-efficient systems will mandate the use of non-
linear models, as our results have demonstrated. However,
linear models continue to be relevant as they are (a) very
robust to noise and outliers, (b) valuable for implementing
iterative feature selection search algorithms, and (c) easier
to understand and interpret than more complex modeling
techniques.

Feature selection. The CHAOS framework builds a single-
machine power model across multiple applications. Feature
selection is a critical component in building robust models.
Using our algorithm has led to some interesting observations
that can help with feature selection for future systems. Prior
to Windows Server 2008 R2, core frequency was not avail-
able in the default set of OS-level performance counters and
led to earlier models with much higher error because of the
system’s “hidden” frequency states. Because the processor
frequencies were so highly correlated, we were able to use
a single core’s frequency as a proxy for the full system.
Although one core’s frequency was the dominant feature
for the non-traditional servers, we did start to see a second
core frequency start to emerge as a significiant feature for
the traditional servers. Future systems with the ability to
operate cores fully independently will have less-correlated
core frequencies (less than 80%) and will require individual
core frequencies as features. Furthermore, as Table II shows,
more storage-related features were significant when systems
had more disks. Moving forward, non-volatile memory, like
high-performance SSDs, and other features and components,
like per-core DVFS, core parking and GPU and accelerator
activity with hidden system state will require performance
counters that can capture this activity, areas of future work.

Modeling Technique. In general, our results demonstrate
that all systems with DVFS require non-linear models to
minimize the error. The Atom platform operates at a single
clock frequency and does not require more features or more
complex modeling techniques, similar to servers 10 years
ago. Our evaluation indicates the necessity of more complex
modeling techniques and judicious feature selection, like
we have presented, given the use of more advanced power
management techniques in the future.

Modeling Accuracy. Actual measured power is the gold
standard of accuracy for all power modeling work. The
more inaccurate a model is, the larger the necessary guard
band for any mechanism that relies on its predictions. For
example, in model-based power capping, inaccurate models
would result in more conservative power caps and therefore
would strand power. In resource allocation, inaccurate power
models would require conservative provisioning with too few
machines deployed in a fixed area, requiring more capital
expenditures to meet performance demands.

Comparisons between the accuracy of our approach and
prior approaches are difficult, since the results in prior work
are system- and platform-dependent with respect to static
and dynamic power ranges. However, our models match the
reported accuracy using their metric for our systems. We
have also used our platforms to evaluate some previously
proposed modeling techniques (e.g. linear) and feature sets
(e.g. CPU only); Figures 3 and 4 illustrate the limitations
of these simpler methods. Finally, we have demonstrated a
systematic approach in which we incorporated more mod-
eling techniques and features until we reached diminishing
returns with respect to accuracy.

VI. CONCLUSION

In this paper, we developed and validated high-fidelity
cluster power models for six server platforms. These plat-
forms covered a range of server designs proposed in recent
literature [6, 7, 8, 9, 10] and used in current practice, from
embedded- and mobile-processor-based systems to desktop-
and server-processor-based systems, and from homogeneous
to heterogeneous cluster configurations. Our models are
based on a statistically sound and automatic framework
that is capable of absorbing a very large number of initial
features and returning a tractable number of features used
in a variety of models: Out of CHAOS comes clarity. All
of these features can be collected by the OS to provide
online power estimates. To the best of our knowledge, these
models are the first to use OS-level counters to predict full-
system and cluster power with this high level of accuracy.
The use of high-level OS counters makes metric collection
convenient and consistent across all the platforms we tested,
unlike hardware performance counters and board-level mea-
surements.

In order to evaluate and compare models across systems
and workload types, we introduced a new error metric, called
dynamic range error (DRE), based on the familiar mean
squared error. This metric provides a frame of reference for
model accuracy with respect to the application’s dynamic
power consumption range on a particular platform, making
it easier to evaluate tradeoffs between cost and accuracy.
This metric can also be used to compare the accuracy of
models across platforms. Our cluster models demonstrate
accuracy in the 0.5-2.5% range using metrics like median
relative error and rMSE divided by average power, and under
12% using our error metric, DRE. As future systems become
more energy-proportional with larger dynamic power ranges
and less static power, accurately capturing the dynamic range
will be increasingly important.

Our cross-platform results show that models based on
CPU metrics alone do not capture the behavior of data-
intensive cluster-level applications. Furthermore, disk uti-
lization metrics significantly improve model accuracy even
on systems with solid-state disks. This result is surprising
since the solid-state disks used in this study have low static

and dynamic power consumption. For the data-intensive
applications examined, disk utilization may also be a proxy
for memory traffic.

We also found that historical processor frequency in-
formation did not significantly improve model accuracy.
We only used the previous processor frequency and not a
window as described in [21]. From the modeling perspective,
we quantified the loss of using a unified set of features
across disparate hardware platforms. This quantification en-
ables informed decision-making about whether the effort of
collecting these additional statistics is necessary in a given
context or if a new model should be generated. Finally, the
general feature set can be used across multiple platforms
and does not impact accuracy compared to platform-specific
models, which can be deployed for online or offline cluster
power prediction.

REFERENCES

[1] J. Hamilton, “Annual fully burdened cost of power,” On-
line. Available: http://perspectives.mvdirona.com/2008/12/06/
AnnualFullyBurdenedCostOfPower.aspx, 2008.

[2] J. Park, “Open Compute Project: Data center v.1.0,”
Online. Available: http://opencompute.org/wp/wp-
content/uploads/2011/07/DataCenter-Electrical-
Specifications.pdf, April 2011.

[3] J. D. Davis et al., “Accounting for variability in large-scale
cluster power models,” in Proc. Exascale Evaluation and
Research Techniques Wkshp. (EXERT), 2011.

[4] J. C. McCullough et al., “Evaluating the effectiveness of
model-based power characterization,” in Proc. USENIX Annu.
Technical Conf., 2011.

[5] K. Rajamani et al., “Power management solutions for com-
puter systems and datacenters,” in Proc. ISLPED, 2008.

[6] D. G. Andersen et al., “FAWN: A fast array of wimpy nodes,”
in Proc. SOSP, 2009.

[7] J. Hamilton, “Cooperative expendable micro-slice servers
(CEMS): Low cost, low power servers for internet-scale
services,” in Proc. Biennial Conf. Innovative Data Systems
(CIDR), 2009.

[8] L. Keys et al., “The search for energy efficient building blocks
for the data center,” in Proc. Wkshp. on Energy-Efficient
Design (WEED), 2010.

[9] A. S. Szalay et al., “Low-power Amdahl-balanced blades for
data intensive computing,” in Proc. HotPower, 2009.

[10] V. Vasudevan et al., “Energy-efficient cluster computing with
FAWN: Workloads and implications,” in Proc. e-Energy,
2010.

[11] P. Ranganathan et al., “Ensemble-level power management
for dense blade servers,” in Proc. ISCA, 2006.

[12] Y. Chen et al., “Managing server energy and operational costs
in hosting centers,” in Proc. SIGMETRICS, 2005.

[13] A. Lewis et al., “Run-time energy consumption estimation
based on workload in server systems,” in Proc. HotPower,
2008.

[14] S. Govindan et al., “Statistical profiling-based techniques
for effective power provisioning in data centers,” in Proc.
EuroSys, 2009.

[15] J. Choi et al., “Profiling, prediction, and capping of power
consumption in consolidated environments,” in Proc. MAS-
COTS, 2008.

[16] K. Singh et al., “Real time power estimation and thread

scheduling via performance counters,” in Proc. dasCMP,
2008.

[17] S. Rivoire et al., “A comparison of high-level full-system
power models,” in Proc. HotPower, 2008.

[18] D. Meisner and T. F. Wenisch, “Peak power modeling for
data center servers with switched-mode power supplies,” in
Proc. ISLPED, 2010.

[19] D. Economou et al., “Full-system power analysis and model-
ing for server environments,” in Proc. Wkshp. on Modeling,
Benchmarking and Simulation (MoBS), 2006.

[20] D. C. Snowdon et al., “Accurate on-line prediction of pro-
cessor and memory energy usage under voltage scaling,” in
Proc. EMSOFT, 2007.

[21] A. Lewis et al., “Chaotic attractor prediction for server run-
time energy consumption,” in Proc. HotPower, 2010.

[22] T. Li and L. K. John, “Run-time modeling and estimation
of operating system power consumption,” in Proc. SIGMET-
RICS, 2003.

[23] D. C. Snowdon et al., “Koala: A platform for OS-level power
management,” in Proc. EuroSys, 2009.

[24] T. Heath et al., “Energy conservation in heterogeneous server
clusters,” in Proc. PPoPP, 2005.

[25] X. Fan et al., “Power provisioning for a warehouse-sized
computer,” in Proc. ISCA, 2007.

[26] S. Bird, “Fixing performance counters: Performance mon-
itoring hardware for the datacenter,” in Proc. Wkshp. on
Architectural Concerns in Large Datacenters (ACLD), 2009.

[27] V. M. Weaver and S. A. McKee, “Can hardware performance
counters be trusted?” in Proc. IISWC, 2008.

[28] A. Kansal et al., “Virtual machine power metering and pro-
visioning,” in Proc. Symp. Cloud Computing (SoCC), 2010.

[29] W. Lang and J. M. Patel, “Energy management for MapRe-
duce clusters,” in Proc. VLDB, vol. 3, no. 1, 2010.

[30] M. Isard et al., “Quincy: Fair scheduling for distributed
computing clusters,” in Proc. SOSP, 2009.

[31] I. Park and R. Buch, “Improve debugging and performance
tuning with ETW,” MSDN Magazine, April 2007.

[32] Microsoft, “Joulemeter,” Online. Available:
http://research.microsoft.com/en-us/downloads/fe9e10c5-
5c5b-450c-a674-daf55565f794/, 2011.

[33] M. Isard et al., “Dryad: Distributed data-parallel programs
from sequential building blocks,” in Proc. EuroSys, 2007.

[34] “ClueWeb09 dataset,” Online. Available:
http://lemurproject.org/clueweb09/.

[35] L. A. Barroso, “Warehouse-scale computing: Entering the
teenage decade,” plenary talk, Federated Computing Research
Conf. (FCRC), 2011.

[36] A. Gelman et al., Bayesian Data Analysis, 2nd ed. Chapman
and Hall/CRC, 2003.

[37] Microsoft, “Windows 2000 Resource Kit performance
counters: Counters by object,” Online. Available:
http://msdn.microsoft.com/en-us/library/ms803998.aspx.

[38] T. Hastie et al., The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, 2nd ed. Springer, 2009.

[39] M. Y. Park and T. Hastie, “L1-regularization path algorithm
for generalized linear models,” Journal of the Royal Statistical
Society: Series B, vol. 69, 2007.

[40] L. Wasserman, All of Statistics: A Concise Course in Statis-
tical Inference, 2nd ed. Springer, 2010.

[41] J. H. Friedman, “Multivariate adaptive regression splines,”
Annals of Statistics, vol. 19, no. 1, pp. 1–67, 1991.

