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Motivation

e Job scheduling as a Tetris game
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e Driven by power usage patterns.

Can we:

o Associate a pattern with each application?
o Enhance scheduler with pattern information?



Motivation
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e Qualitative patterns in applications’ traces
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Talk Outline

e Research questions
e \What is a power signature?

e Methodology:

o Signature validation
o Experimental setup

e Results

e Current and future work



Research Questions

e Can we summarize HPC workloads’ power
behavior into distinctive signatures?

e s such a signature consistent across
o runs?
o Input data?
o hardware configurations?
o hardware platforms?

e How well (quantitatively) does a signature
distinguish a workload?



What is a power signature?

A. The trace itself: vector of power
measurements.

B. Statistical summary of the trace



Time-series-based Signature

How do we quantify the difference between two
traces?
1. Mean Squared Difference (MSD)

o Match power observations pairwise, and take MSD
o Traces must be same length

2. Dynamic Time Warping (DTW)

o ldentifies similarities of two time series
o Accounts for offsets and differences in periodic
frequency



Feature-based Signature

What features are useful?

e Basic statistics:

o 2-vector: < Maximum, Median >
o (Divide each by trace’s minimum power)
o Call this MaxMed

e More involved statistics that have been

found useful in time-series clustering:
o Standard Deviation + 11 other features
o Augmented with MaxMed, call this stat14.



Signature Validation

e Clustering: “optimally” partition a set of traces

e Classification: automatically identify the label
(e.g. workload) of a trace



Signature Validation: Clustering

e Input:
o Data points (traces)
o Notion of distance (signature)

e QOutput: Partition

Algorithms:
e kmeans: centroid-based clustering
e dbscan: density-based clustering

e hclust: hierarchical clustering
o dendrograms



Signature Validation: Clustering

Our signature is good if the partition is good.
How do we know a partition is good?

1. Look at the partition qualitatively:
Are workloads grouped together?

2. Quantitatively compare partition to some

“iIdeal” reference.
o Example ideal reference: grouped by workload



Signature Validation: Classification

Algorithm: Random forest

Leave-one-out accuracy measures a
signature’s utility

Bonus: Variable importance measures



Experimental Setup

255 power traces from 13 benchmarks.

e (Baseline) e Synthetic: Power
e SystemBurn™: Model Calibration™*

o FFT1D e Sort

O 'Fr:I}ZD e Prime95

O

ey e Graphd00

o GUPS e Stream

o SCUBLAS e Linpack-CBLAS

o DGEMM+SCUBLAS

** Rivoire et al, Hot Power, 2008

* Josh Lothian et al., ORNL Technical Report, 2013



Experimental Setup

S1 (RR) S2 (0C) S3 (LC) S4 (RF)
CPU AMD Athlon 65 X2 | Intel Core i5-750 @ | Intel Core i5-750 @ | Intel Core i7-3770
48004+ @ 2.5 GHz 2.67GHz 2.67GHz @ 3.40GHz
RAM | 4GB 8 GB 8 GB 8 GB
GPU GeForce 9800gt GelForce GTX 285 | GelForce GTX 650 | GelForce GTX 670
Ti 1GB 2GB
Power || 115 195 W 120-226 W 85252 W 74-309 W

Watts Up? Pro power meter reports power
consumption once per second.




Clustering Results

2-clustering:

e Top: Stream, Prime95,
Linpack-CBLAS
(CPU-intensive)

e Bottom: Calib, Baseline,

OCRR data
o n=30

o 6 workloads (different input
configurations)
Algorithm: hclust
Signature: raw trace
Distance: MSD
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Clustering Results

Threshold Distance (Stat14)

e OCRR data
_30 0 5 10 15 20 25
o Nn= | | | | L |
o ©6 workloads (different input OC.primes.40m —
. . OC.stream.4core.40m
configurations) RR.linpack.cblas.40m 5‘17
. RR.primes.40m
[ ) Algorlthm: hClUSt RR.stream.2core.40m
. OC. . .
e Signature: stat14 AR stream 1core.25m
e Distance: Manhattan e

OC.stream.4core.25m
OC.linpack.cblas.25m
. RR.primes.25m
4_CI USte rl ng - RR.linpack.cblas.25m
" RR.stream.2core.25m
OC.nsort.200MR.25m

e Stream, Prime95, Linpack- ocnsortaomsom —I———

CBLAS RSQEZ?QE?ME:??Q _

OC.baseline.1200000 —

OC.baseline.2668000
e Sort RR.basenne.zsoom:o':l__'—
OC.baseline.ondemand
RR.baseline.1000000

e Baseline RR.calib.2500000
: OC.calib.2668000 :':)7

o Ca“b OC.calib.ondemand

OC.calib.1200000

RR.calib.1000000 B

OC.nsort.100MR.15m
RR.nsort.120MR.25m :)_




Clustering Metric

|deal clustering: by workload.

Info-theoretic measure of partition similarity:
Adjusted Normalized Mutual Information

(Derived from NMI)
e NMI = (Mutual information) / (Joint entropy)
e NMI is between 0 (worst) and 1 (best)

e Expected ANMI of two random partitions is O.



Clustering Results

e Data:
o LCRF (n=225)
o LC(n=111)
o RF (n=114)

e Algorithm: hclust

e Signature: MaxMed

ANMI

Signatures may be
more consistent within
hardware platform
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Clustering Results

e Data: LC (n=111)
e Algorithm: hclust

MaxMed and DTW
signature methods are

more effective than
Stat14 and MSD

ANMI
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Classification Results

e [rained a random forest classifier on LCRF
data (n=225)

e Using MaxMed or Stat14 yields leave-one-
out accuracy >80%



Classification Results

Gini variable
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Classification Results

e Stat3 classifier labels traces with >85%
accuracy

O MaxMed
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Conclusions

e \We evaluated different types of signatures:

o lime-series-based
o Feature-based

e Some workloads have unigque signatures,
some workloads are less easily
distinguished from others.

e Signatures can distinguish workloads across
hardware platforms, but are more effective
given data from a single machine type.



Current and Future Work
e EXxpand to:

o Heterogeneous workloads
o MPIl/distributed workloads
o Finer-grained or coarser-grained samples

e Online workload recognition

e \Workload-aware energy-efficient scheduling
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Afterthought: Clustering Again

o Data LC (n=1 1 1 ) ANMI: Hierarchical clustering of LC data set

e Algorithm: hclust 2 o sas

Stat3 is not obviously

better than MaxMed  _ - P
for clustering ° //

Number of clusters



Backup: More Clustering Results

e Data: LCRF (n=225)
e Algorithm: hclust

The result holds for
multiple platforms:

MaxMed and DTW
signature methods are

more effective than
Stat14 and MSD

ANMI
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