# Power Signatures of High-Performance Computing Workloads

Jacob Combs Jolie Nazor Rachelle Thysell Fabian Santiago Matthew Hardwick Lowell Olson Suzanne Rivoire

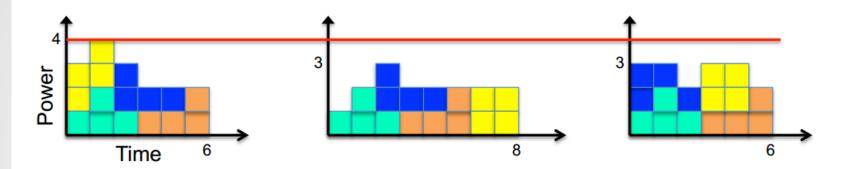


Chung-Hsing Hsu Stephen W. Poole



# **Motivation**

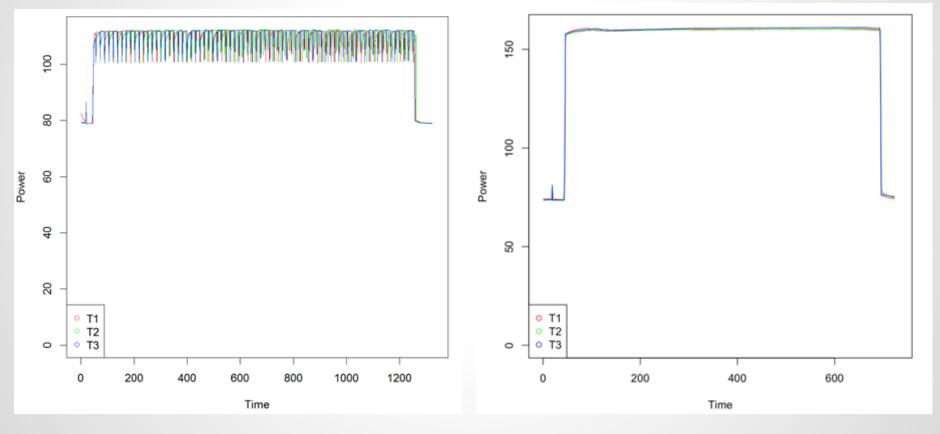
Job scheduling as a Tetris game



- Driven by power usage patterns. Can we:
  - Associate a pattern with each application?
  - Enhance scheduler with pattern information?

#### **Motivation**

Qualitative patterns in applications' traces



FFT

CUBLAS

# **Talk Outline**

- Research questions
- What is a power signature?
- Methodology:
  - Signature validation
  - Experimental setup
- Results
- Current and future work

#### **Research Questions**

- Can we summarize HPC workloads' power behavior into distinctive signatures?
- Is such a signature consistent across
  - o runs?
  - o input data?
  - o hardware configurations?
  - o hardware platforms?
- How well (quantitatively) does a signature distinguish a workload?

#### What is a power signature?

A. The trace itself: vector of power measurements.

B. Statistical summary of the trace

### **Time-series-based Signature**

- How do we quantify the difference between two traces?
- 1. Mean Squared Difference (MSD)
  - Match power observations pairwise, and take MSD
  - Traces must be same length
- 2. Dynamic Time Warping (DTW)
  - Identifies similarities of two time series
  - Accounts for offsets and differences in periodic frequency

### **Feature-based Signature**

What features are useful?

- Basic statistics:
  - o 2-vector: < Maximum, Median >
  - (Divide each by trace's minimum power)
  - Call this MaxMed
- More involved statistics that have been found useful in time-series clustering:
  - Standard Deviation + 11 other features
  - Augmented with MaxMed, call this stat14.

### **Signature Validation**

• Clustering: "optimally" partition a set of traces

 Classification: automatically identify the label (e.g. workload) of a trace

# **Signature Validation: Clustering**

- Input:
  - Data points (traces)
  - Notion of distance (signature)
- Output: Partition

Algorithms:

- kmeans: centroid-based clustering
- dbscan: density-based clustering
- hclust: hierarchical clustering
  - o dendrograms

#### **Signature Validation: Clustering**

Our signature is good if the partition is good. How do we know a partition is good?

1. Look at the partition qualitatively: Are workloads grouped together?

- 2. Quantitatively compare partition to some "ideal" reference.
  - Example ideal reference: grouped by workload

#### **Signature Validation: Classification**

Algorithm: Random forest

Leave-one-out accuracy measures a signature's utility

**Bonus: Variable importance measures** 

# **Experimental Setup**

255 power traces from 13 benchmarks.

- (Baseline)
- SystemBurn\*:
  - FFT1D
  - FFT2D
  - TILT
  - DGEMM
  - GUPS
  - SCUBLAS
  - DGEMM+SCUBLAS

- Synthetic: Power Model Calibration\*\*
- Sort
- Prime95
- Graph500
- Stream
- Linpack-CBLAS

\*\* Rivoire et al, Hot Power, 2008

\* Josh Lothian et al., ORNL Technical Report, 2013

### **Experimental Setup**

|       | S1 (RR)               | S2 (OC)             | S3 (LC)             | S4 (RF)            |
|-------|-----------------------|---------------------|---------------------|--------------------|
| CPU   | AMD Athlon 65 X2      | Intel Core i5-750 @ | Intel Core i5-750 @ | Intel Core i7-3770 |
|       | $4800+@~2.5~{ m GHz}$ | $2.67 \mathrm{GHz}$ | $2.67 \mathrm{GHz}$ | @ 3.40GHz          |
| RAM   | 4 GB                  | 8 GB                | 8 GB                | 8 GB               |
| GPU   | GeForce 9800gt        | GeForce GTX 285     | GeForce GTX 650     | GeForce GTX 670    |
|       |                       |                     | Ti 1GB              | 2GB                |
| Power | 115–195 W             | 120–226 W           | $85-252 \mathrm{W}$ | 74–309 W           |

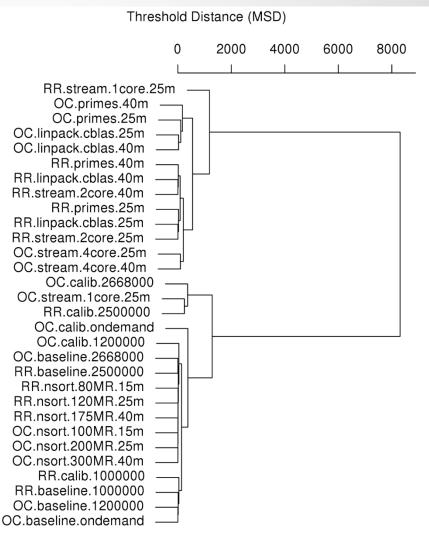
Watts Up? Pro power meter reports power consumption once per second.

# **Clustering Results**

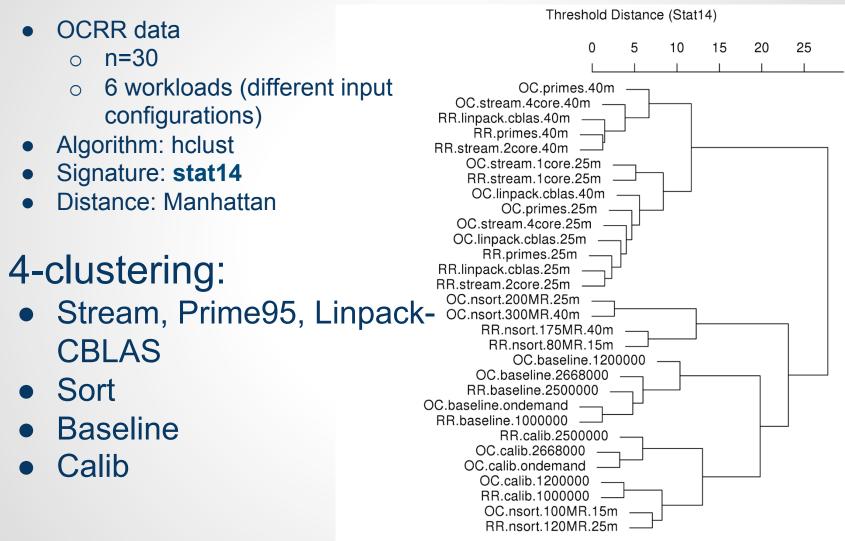
- OCRR data
  - o **n=30**
  - 6 workloads (different input configurations)
- Algorithm: hclust
- Signature: raw trace
- Distance: MSD

#### 2-clustering:

- Top: Stream, Prime95, Linpack-CBLAS (CPU-intensive)
- Bottom: Calib, Baseline, Sort



# **Clustering Results**



### **Clustering Metric**

Ideal clustering: by workload.

Info-theoretic measure of partition similarity: <u>Adjusted Normalized Mutual Information</u>

#### (Derived from NMI)

- NMI = (Mutual information) / (Joint entropy)
- NMI is between 0 (worst) and 1 (best)

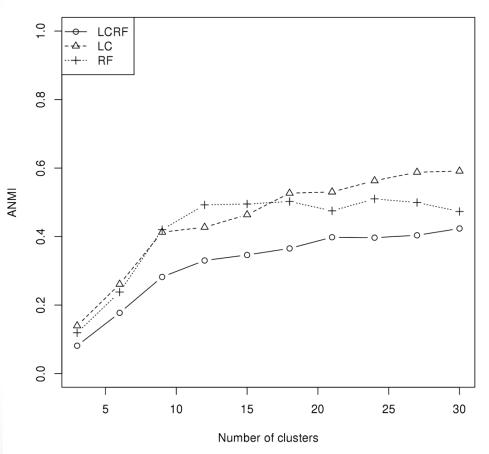
• Expected <u>ANMI of two random partitions is 0.</u>

# **Clustering Results**

- Data:
  - LCRF (n=225)
  - LC (n=111)
  - RF (n=114)
- Algorithm: hclust
- Signature: MaxMed

#### Signatures may be more consistent *within* hardware platform

ANMI: Hierarchical clustering using MaxMed feature vector

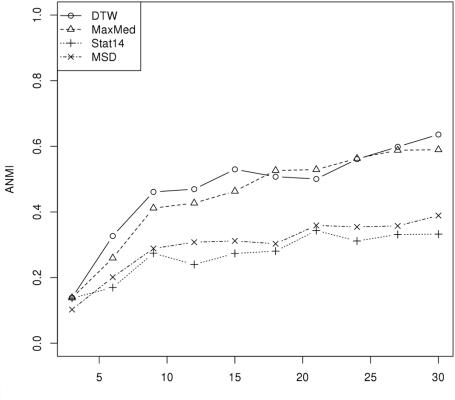


# **Clustering Results**

- Data: LC (n=111)
- Algorithm: hclust

MaxMed and DTW signature methods are more effective than Stat14 and MSD

ANMI: Hierarchical clustering of LC data set



Number of clusters

#### **Classification Results**

- Trained a random forest classifier on LCRF data (n=225)
- Using MaxMed or Stat14 yields leave-oneout accuracy >80%

# **Classification Results**

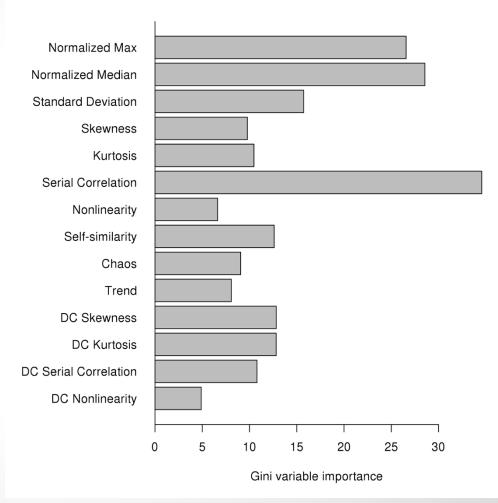
Gini variable importance suggests:

- MaxMed is a good subset of Stat14
- Try Stat3:

>

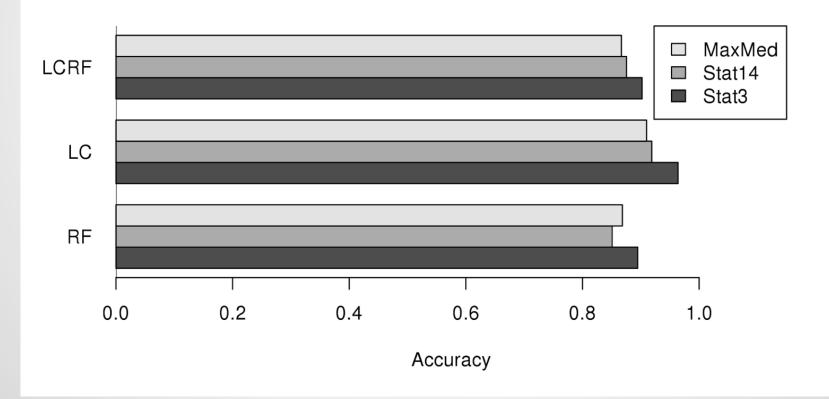
< Normalized Maximum,

Normalized Median, Serial Correlation



#### **Classification Results**

Stat3 classifier labels traces with >85% accuracy



#### Conclusions

- We evaluated different types of signatures:
   Time-series-based
  - Feature-based
- Some workloads have unique signatures, some workloads are less easily distinguished from others.
- Signatures can distinguish workloads across hardware platforms, but are more effective given data from a single machine type.

# **Current and Future Work**

#### • Expand to:

- Heterogeneous workloads
- MPI/distributed workloads
- Finer-grained or coarser-grained samples
- Online workload recognition
- Workload-aware energy-efficient scheduling

#### **Acknowledgements**







This work was supported by the United States Department of Defense (DoD) and used resources of the DoD-HPC Program at Oak Ridge National Laboratory.

# **Afterthought: Clustering Again**

- Data: LC (n=111)
- Algorithm: hclust

#### Stat3 is *not* obviously better than MaxMed for clustering

0. Stat3 - ☆ MaxMed 0.8 0.6 ANMI 0.4 0.2 0.0 5 10 15 20 25 30

ANMI: Hierarchical clustering of LC data set

Number of clusters

# **Backup: More Clustering Results**

- Data: LCRF (n=225)
- Algorithm: hclust

The result holds for multiple platforms:

MaxMed and DTW signature methods are more effective than Stat14 and MSD ANMI: Hierarchical clustering of LCRF data set

