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Abstract—Workload-aware power management and schedul-
ing techniques have the potential to save energy while minimizing
negative impact on performance. The effectiveness of these
techniques depends on the stability of a workload’s power con-
sumption pattern across different input data, resource allocations
(e.g. number of cores), and hardware platforms.

In this paper, we show that the power consumption behavior
of HPC workloads can be accurately captured by concise signa-
tures built from their power traces. We validate this approach
using 255 traces collected from 13 high-performance computing
workloads on 4 different hardware platforms. First, we use
both feature-based and time-series-based distance metrics to
cluster our traces, and we quantitatively show that feature-based
clusterings segregate traces by workload just as effectively as the
more compute- and space-intensive time-series-based clusterings.
Second, we demonstrate that unlabeled traces can be classified by
workload with over 85% accuracy, based only on these concise
statistical signatures.

I. INTRODUCTION

High-performance computing systems are increasingly
power-constrained, requiring careful management to maximize
the amount of computation done within a system’s power bud-
get [1]. Particularly for systems that host a limited number of
workloads, workload-aware power management and schedul-
ing techniques have the potential to maximize work done
within a power budget or to save energy without compromising
performance [2]-[4]. However, workload-aware techniques im-
plicitly assume that a workload’s power consumption behavior
is relatively stable across different input data. Furthermore,
the practical applicability of these techniques is limited unless
workloads also exhibit consistent power consumption behavior
when run with different resource allocations (e.g. number of
cores) and across hardware platforms.

Our goal is to automatically identify workload-specific
power consumption patterns based on quantitative measures, or
power signatures, for HPC applications. The central questions
we explore are

1) Is it possible to automatically, quantitatively summa-
rize the power behavior of an HPC workload or class
of workloads into a distinctive power signature?

2)  To what extent is this signature consistent across runs,
input data, hardware configurations, and hardware
platforms?
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3)  Quantitatively, how well does this signature distin-
guish this workload or class of workloads from
others?

To answer these questions, we characterize a set of 255
power consumption traces collected from 13 HPC workloads
on 4 different hardware platforms. Each workload was run
multiple times, in different configurations, on multiple plat-
forms. We begin by experimenting with different notions of
the pairwise distance between traces, which we use as input
to standard clustering algorithms. The goals of this initial step
are twofold. First, we look for groups of applications that are
consistently clustered together. The presence of such groups
would indicate that it is possible to construct a single power
signature for the entire group, but maybe not for individual
workloads within the group. Second, we quantitatively evaluate
the ability of the different distance metrics to yield clusterings
that are cleanly separated by workload. We use the most
successful metrics from this initial clustering step to construct
power signatures for our traces. Finally, we train a classifier
based on these power signatures and evaluate its accuracy in
identifying unlabeled traces.

This paper makes the following contributions:

e Building power signatures: We use information-
theoretic measures of clustering quality to evaluate the
ability of time-series-based and feature-based distance
metrics to cleanly separate power traces that came
from the same workload. Our results show that simple
statistical feature-based distance metrics yield cluster-
ings that are just as good as the computation- and
space-intensive time-series metrics.

o Consistency of signatures: We quantitatively verify
that power signatures are more consistent within a
single hardware platform, even when input data and
resource allocation vary, than across platforms. How-
ever, we show that it is still possible to generate
accurate clusters for power traces taken from multiple
platforms.

o Distinctiveness of signatures: We train a classifier on
simple feature-based signatures, and we show that it
is possible to identify unlabeled traces with over 85%
accuracy, even across platforms and configurations.

The rest of this paper is organized as follows. Section II
covers related work on identifying workload-specific power



consumption patterns. Section III describes our different meth-
ods of constructing power signatures, and Section IV explains
how we quantitatively evaluate these signatures using cluster-
ing. Section V presents the clustering results, and Section VI
evaluates the performance of a classifier that uses our best-
performing signatures. Section VII concludes the paper.

II. RELATED WORK

The quantitative study of power signatures is new in HPC.
However, researchers have used the term to refer to qual-
itative patterns observed in workloads’ power consumption.
For example, Song et al. found, by visual inspection, that an
application’s power consumption looks similar from run to run
but varies more across machines [5], and Laros et al. showed
an example of two similar-looking power consumption traces
generated by the same application on two different hardware
platforms [6]. Subramaniam et al. similarly used the term
“power signature” to talk about observed patterns, or the lack
thereof, in HPC applications and in their individual phases [7].
By contrast, Kamil et al. visually examined the power traces
of multiple HPC workloads. They found that some classes of
workloads can be distinguished from each other but that a
broad class of CPU-intensive workloads was indistinguishable
from Linpack [8].

More quantitatively, Hsu et al. developed signatures of
the power-load relationship of aggressively power-managed
servers, based on published SPECpower_ssj2008 results [9];
however, these signatures were not used to distinguish one
workload from another. More recently, Hsu et al. developed
power signatures based on short statistical summaries of ap-
plications’ power traces [10]. However, they evaluated them
only qualitatively, by visual inspection of the clusterings they
yielded for a small dataset, and they did not attempt to compare
them to results based on time-series metrics or signatures with
more complex features.

Power signatures have a longer history in other subfields
of computing, particularly in security. In 1999, Kocher et al.
showed that an attacker could identify the encryption algorithm
used by an embedded device based on visual inspection of
its power traces and could uncover secret keys via statisti-
cal analysis [11]. Along similar lines, Clark et al. recently
showed that it is possible to automatically determine what
website a machine is visiting based only on a frequency-
domain representation of its power traces [12]. They argued
that advances in energy-proportional computing [13], which
strengthen the relationship between a system’s load and its
power consumption, are making it easier to construct such
power signatures. While their goal of identifying workloads
based on power signatures is similar to ours, their domain
of interest (identifying websites loaded on a laptop) and
their high-resolution power measurements (250 KHz) make
frequency analysis more promising in their context. Power
signatures can also help to maintain system integrity; Kim et
al. found that anomalies in average power consumption can
indicate the presence of malware on mobile devices [14].

Our work, and the papers discussed so far, all use power
consumption traces as the basis for constructing power sig-
natures, whether by visual inspection or by more quantitative
means. A related area of research is building signatures based

on code instrumentation or performance counters. Several stud-
ies have used this approach to identify patterns in applications’
power consumption [15]-[17] or resource usage [18]-[21] or
to detect anomalous behavior [22]. They build these signatures
from traces of performance counter values rather than power
consumption, and performance counters can be collected much
more frequently than the standard 1 Hz for system-level power
measurements in HPC [23]. However, to construct and validate
the signatures, some of these studies use similar clustering and
classification techniques to the ones we employ.

Finally, some papers have applied time-series analysis
to power consumption traces, generally in the context of
datacenters. Wang et al. [24] looked at patterns in datacenter
workloads across spatial and temporal scales at an even coarser
granularity than this work. They found high self-similarity
in datacenter power demands. Herbst et al. [25] also apply
time-series analysis to power traces, but in the context of
online, longer-term workload forecasting in datacenters. Long-
term datacenter loads tend to vary predictably with the time
of day and the day of the year, so they are able to heavily
rely on traditional time series metrics like seasonality and
periodicity. By contrast, any periodic behavior in the power
traces we examine is due to the application itself rather than
to predictable seasonal fluctuations. Furthermore, our focus is
on distinguishing power traces from different workloads rather
than on forecasting future loads.

III. CONSTRUCTING POWER SIGNATURES

What is a power signature? In the context of our work, a
power signature is a representation of a power trace—or family
of traces—that preserves information about workload-specific
power behavior. We evaluate two approaches to constructing
these signatures:

1)  Using traces themselves, in their entirety, as “signa-
tures.” This approach certainly preserves information,
but it is space-inefficient. If we store the entire trace
as a signature, the method used to compute the
distance between a pair of traces takes on primary
importance. We explore two such methods.

2)  More compactly, we can use statistical summaries
of power traces, or feature vectors, as signatures.
This technique maps traces onto a feature space in
which standard distance metrics (e.g. Euclidean or
Manhattan) may be used.

A. Time-Series Representation

The original time series representation of a power trace
may constitute a distinctive, though space-intensive, power
signature. To investigate the distinctiveness of this “signature,”
we consider two time-series methods of measuring distance
between power traces.

A strawman approach to comparing two time series is
to simply calculate mean-squared-difference (MSD) between
pairs of corresponding observations. This method requires that
the two power traces be of equal length; given two unequal-
length traces, we downsample the longer one. If S and T
have lengths |S| and |T'| with |S| < |T|, we create T’ by
sampling every |T'|/|S| points from 7" so that | 7| = |S|; then



TABLE 1. SUMMARY FEATURES FOR TIME SERIES

Calculation
max(7T")/ min(T)
median(7T)/ min(T)

Feature
Normalized Max
Normalized Median

Standard Deviation sd(T)

Skewness —1 Z (t — mean(T))>
sd(T)3|T| teT

Kurtosis 1 (t — mean(T))*

sd(T)4|T| teT
See Section III
See Section III

Hurst Exponent [27], [28]

Serial Correlation
Nonlinearity
Self-similarity

Chaos Lyapunov Exponent [29]
Trend 1 — var(T")/ var(T)
DC Skewness Skewness(7T")

DC Kaurtosis Kurtosis(7")
DC Serial Correlation Serial Correlation(7")
DC Nonlinearity Nonlinearity (7")

T is the original power trace. 1" is the decomposed (DC) power trace.

we define MSD(SS, T') to be MSD(.S,T”). This metric is close
to Euclidean distance.

MSD, however, fails to capture our intuitive notions of
similarity for some types of traces. For example, if two traces
both alternate between peak and idle power, we would like
to say that the similarity between the two traces is very high
(or, equivalently, that the distance is very low). However, if
one trace is offset by just one sample relative to the other,
the mean squared difference will be at its maximum possible
value. An ideal metric would be shift-invariant.

Therefore, we also examine a more sophisticated ap-
proach to time series comparison: Dynamic Time Warping
(DTW) [26], which is a well-known algorithm for identifying
similarities between two time series, irrespective of offsets in
time or differences in frequencies of periodic behavior. DTW
builds a sequence of ordered pairs called a “warping path”
that represents an alignment of carefully chosen corresponding
points in the two traces. This warping path may be subject
to constraints to ensure certain alignment properties, such as
the requirement that observations be matched in a strictly
increasing order with respect to time (monotonicity).

B. Feature-Vector Representation

An alternative to storing entire traces as “signatures” is to
summarize each trace as a vector of features extracted from the
raw data. We evaluate two approaches to feature-vector-based
signatures.

First, we consider the two-element feature vector MaxMed,
which consists of a power trace’s maximum and median values,
each normalized to the minimum trace power.

< max median >
min’> min

We choose these two features as our initial signature, fol-
lowing the work of Hsu et al. [10], which showed qualitatively
that combining two location parameters seemed to yield good
clusterings for power traces.

Second, we augment this feature vector with twelve addi-
tional features: the standard deviation of the observations, and
eleven features that Wang et al. found useful in time-series
clustering [27]. Table I lists these features. In particular:

e  Skewness measures lack of symmetry in a distribution.

e  Kurtosis measures the heaviness of the tails of a
distribution, with higher kurtosis corresponding to a
sharper peak (lighter tails).

e  Serial correlation is calculated using the Box-Pierce
test statistic implemented in R'.

e Nonlinearity is measured by the Terdsvirta test statistic
implemented in the R tseries package’.

o  Self-similarity refers to long-range dependence in a
time series. We use the Hurst exponent [27], [28],
estimated by the R fracdiff package’.

e  Chaos refers to the tendency of time series observa-
tions to diverge from initial values. We measure chaos
using the Lyapunov exponent [29].

o  Trend refers to changes in the mean of a series over
time. We measure this by “decomposing” a power
trace, which involves subtracting out trend and sea-
sonality components. A preliminary analysis revealed
that our power traces do not exhibit significant sea-
sonal behavior, so the process for decomposing them
consists of identifying and removing trend, using a
penalized regression spline as outlined by Wang et
al. [27]. Once we have obtained the detrended time
series, we calculate the Trend feature as shown in
Table L.

e  Features marked “DC” are statistical summaries of the
decomposed power trace.

1V.  METHODOLOGY
A. Experimental Setup

Our collection of power traces contains 255 power traces
from 13 benchmarks run on 4 machines. We ran each bench-
mark multiple times, with at least two different data inputs, and
with different configurations (e.g. number of cores) whenever
possible.

The benchmarks are

1)  baseline: Active-idle mode

2)  nsort: The nsort sorting software, doing an external
sort [30]

3)  p95: A Mersenne prime finder [31]

4)  linpack [32]

5)  calib: The Mantis calibration suite, which stresses
the CPU, memory, and/or I/O subsystems to varying
degrees [33]

6) stream: The STREAM memory-bandwidth bench-
mark [34]

7)  graph500 [35]

8)  sb-tilt: TILT [36]

9)  sb-fftid: FFT1D [36]

10)  sb-fft2d: FFT2D [36]

11)  sb-dgemm: DGEMM [36]

12)  sb-gups: GUPS [36]

13)  scublas.dgemm: DGEMM-CPU and cuBLAS-GPU

IR code: Box.stat (T) Sstatistic
2R code: terasvirta.test (T)$statistic
3R code: fracdiff (T, 0, 0)$d + 0.5



TABLE II.

FOUR SYSTEMS USED IN DATA COLLECTION

Machine RR oC LC RF
CPU AMD Athlon Intel Core Intel Core Intel Core
X2 4800+ i5-750 i5-750 i7-3770
Cores 2 4 4 4
GHz 1.0-2.5 1.2-2.67 1.2-2.67 1.6-3.4
RAM 4 GB 8 GB 8 GB 8 GB
GPU GeForce GeForce GTX GeForce GTX GeForce GTX
9800gt 285 650 Ti 1GB 670 2GB
Power 115-195 W 120-226 W 85-252 W 74-309 W
Traces 14 16 111 114

Benchmark names with the sb prefix come from the
SystemBurn software tool [36]. SystemBurn allows users to
methodically create a maximal system load for testing and
validation purposes, and the benchmarks listed are among the
sample workloads it provides. The scublas.dgemm workload
consists of DGEMM running on the CPU while cuBLAS runs
on the GPU.

Table II shows the configurations of our 4 test machines,
which all run the Linux operating system. The ondemand
frequency scaling governor was turned on during data collec-
tion, and Intel Turbo Boost was not used. To monitor power
consumption, we used a Watts Up? PRO power meter, which
reports instantaneous power consumption once per second.
This sampling rate is typical in HPC environments [23], [37].
The accuracy of power measurement is +1.5% plus 3 counts
of the reported value.

B. Clustering Algorithms

The popular approaches for cluster analysis include hierar-
chical clustering, centroid-based clustering, and density-based
clustering; we consider one from each category. All of these
approaches require a notion of distance between a pair of
points in the feature space, as described in the previous section.

1)  hclust [38] (hierarchical clustering): We use agglom-
erative (“bottom-up”) hierarchical clustering, which
begins by assigning each data point to its own clus-
ter and incrementally joins the two closest clusters
together until all of the data points are in a single
cluster. The algorithm requires a definition of the
distance between two clusters; we use the complete-
linkage distance, which is the largest distance be-
tween any two points in the two different clusters.
This choice tends to result in compact clusters of
points that are all relatively close to each other. A
nice feature of hclust is that the technique produces
a tree showing which smaller clusters merged at each
step, which provides more qualitative insight than a
single clustering. To get a clustering, we can cut the
tree at any height (or distance threshold); the number
of clusters will depend on the height at which we cut
the tree.

2)  dbscan [39] (density-based clustering): The dbscan
algorithm searches the feature space for regions
of unusually high density. Its notion of density-
reachability requires two parameters, a distance ¢
and MinPts. It groups chains of directly or indirectly
density-reachable points into a cluster. This algorithm
does not require a pre-specified number of clusters,
and it does not force all of the points to belong to

some cluster. However, the value of € must be chosen
with care, and it is possible for the desired clusters to
have such varying densities that there is no reasonable
choice of e.

3) k-means [40] (centroid-based clustering): The idea of
k-means is to partition all the points into k clusters,
in which each point belongs to the cluster with the
nearest mean. This partition effectively divides the
feature space into k pieces. The required parameter
for the technique is the desired number of clusters,
k. While k-means is straightforward, it has some
disadvantages. First, it only works on Euclidean dis-
tance, although variants of k-means use other distance
metrics. Second, k-means tends to perform poorly if
the desired clusters have significantly different sizes
or densities.

C. Quantitative Evaluation of Clustering Results

To quantitatively evaluate the “goodness” of a clustering,
we look at its similarity to one or more reference clusterings.
In our case, these clusterings represent the traces in the dataset
grouped by workload or by workload class.

Numerous measures of clustering similarity have been
proposed, falling into two main categories: pair-based mea-
sures such as the Rand index [41], and information-theoretic
measures. The Rand index simply examines each pair of points
in the dataset and checks whether the two clusterings agree or
disagree on whether the pair should be in the same cluster: a
Rand index of 0 means that the two clusterings do not agree
on any pair of points, and a Rand index of 1 means that the
two clusterings are identical. A variation of the Rand index,
the Adjusted Rand Index (ARI), adjusts this index for chance;
that is, two random partitionings would have an expected ARI
of 0, and ARI can go below O if the degree of similarity is
lower than this expected value [42].

However, in this work, we use the more complicated
Adjusted Normalized Mutual Information (ANMI) [43] metric
to quantify clustering similarity. We first explain this metric
and then justify its use over the Adjusted Rand Index in this
context.

Consider the two clusterings U = {U;,Us,...,Ugr} and
V ={W,Va,...,Vc}, and let a; and b; represent the number
of data points in clusters U; and V; respectively. The similarity
between two clusterings of N data points (traces) can be
summarized by the R x C contingency table where each entry
n;; represents the number of data points common to clusters
U; and V.

Mutual information I and joint entropy H are given by

This ni;j /N
(U, V)= Y Jog —I—
( ? ) : N Og aib]/Nz’

i=1 j=1
R C n n

H(U,V):—ZZ#log N

i=1 j=1

A similarity metric, normalized mutual information (NMI), is



given by
I(U,V)
NMI ===
U, V) AU, V)

For any two clusterings U and V', NMI(U, V) is between 0
and 1, with higher values indicating more similar clusterings.

We might expect this similarity metric to have values close
to 0 given two random clusterings as input, but this is not the
case for NMI. To achieve this property, we adjust NMI as
proposed by Vinh et al. [43], calculating the expected value
E [NMI(U, V)] by simulation.

This adjusted similarity metric, ANMI, is given by

NMI(U, V) — E [NMI(U, V)]

ANMI(U, V) = 1 — E[NML(U, V)]

Despite the complexity involved in understanding and
calculating the ANMI, it has one major advantage over the
ARI for our purposes: its value is much less sensitive to the
numbers of clusters in the two clusterings being compared. To
develop intuition about this metric, we start with the combined
225 traces on our LC and RF machines, grouped into 13
clusters (one per workload). We then experiment with different
modifications to this reference clustering and compute the
resulting ANMI and ARI similarity measures:

e  Splitting all clusters in half. In this analysis, we com-
pare the original 13-clustering to a 26-clustering gen-
erated by splitting each of the original 13 clusters into
two equal-sized clusters. The ANMI between these
two clusterings is 0.75, and the ARI is 0.62. After
performing a second split to compare the original 13-
clustering to a 52-clustering, the discrepancy grows:
the ANMI is 0.54, and the ARI is 0.33. Because we
are open to the idea of grouping related workloads
into a class, we prefer a metric that does not harshly
penalize this type of split.

e Moving data points between clusters. In this analysis,
we build 4 new clusterings by starting with the original
13-clustering and randomly moving 1, 2, 10, or 20
data points between clusters. When we compare each
of the new clusterings with the original clustering,
the ANMI value is less than the ARI value; that
is, ANMI punishes movement between clusters more
harshly than ARI. When we move 20 data points, or
approximately 10% of the points, the ANMI drops to
0.75, while the ARI is 0.84.

In short, we use ANMI because some workloads may be in-
distinguishable from other workloads of the same “class” based
on their power traces. With both of the adjusted indices, it is
important to remember that a value of 0, not 0.5, corresponds
to the similarity of two random partitions of the dataset; values
of 0.5 would actually indicate a strong similarity between the
clusterings, as suggested by the examples above.

D. Classification Algorithm

Based on our clustering results, as we discuss in Section V,
we conclude that it is possible to categorize traces based on
their workload, rather than simply as members of a class

of indistinguishable workloads. The next step is to train a
classifier on a set of (signature, workload) pairs and evaluate
its accuracy identifying the workload of unlabeled traces based
on their power signatures.

We use random forest [44] as our classification algorithm.
This technique builds a large number of randomized decision
trees and chooses the mode of their predictions. We choose
this algorithm for several reasons:

e It works well on smaller datasets, using the statistical
technique of bagging to guard against overfitting.

e It is intuitive and interpretable compared to other
similarly accurate classifiers, since it is based on
decision trees.

e It provides estimates of the relative importance of the
different variables used to construct the trees.

e It is easy to tune, with only two parameters: the
number of trees created, and the number of predictors
to sample at each node of a tree.

e Its training phase is fast and parallelizable, since the
trees can be generated independently. Prediction is
also fast.

V. CLUSTERING RESULTS

We divide our collection of 255 traces into two data sets,
which we label OCRR and LCRF. The OCRR data set consists
of 30 power traces corresponding to 6 workloads run with
different input configurations on the two systems OC and RR.
The remaining 225 traces make up the LCRF data set, which
contains traces of 13 workloads run on machines LC and RF.

To build intuition about our power signatures, we evaluate
clusterings of OCRR traces, manually checking for “success-
ful” categorization by workload. Dendrograms are useful for
visualizing hierarchical clustering of the smaller OCRR trace
set using the MSD metric, and we present such a dendrogram
in Figure 1. Of the two main clusters we see here, it is worth
noting that one contains only traces from the workloads that
are compute-intensive on our systems.

Hierarchical clustering using a more sophisticated
signature—the Stat14 feature vector—produces the clustering
in Figure 2. This clustering separates the workloads into four
categories: calib, baseline, nsort, and the compute-intensive
workloads. It appears to be more difficult to distinguish
the compute-intensive workloads from one another, and this
finding is consistent with prior work [8]. These preliminary
results indicate that the Statl4 feature vector representation
of a trace may be more effective than using MSD to identify
similar traces.

For the LCRF data set, visually checking the 225-leaf
dendrogram is impractical. Therefore, we use ANMI, the
clustering similarity measure that we introduced in Section IV.

Recall that an ANMI value is associated with a “ground
truth” reference clustering. For this, we consider an ideal
clustering to be one that groups together traces from the
same workload. However, we observe that clustering traces
by workload may be more difficult when there is data from
multiple hardware platforms. For this reason, we investigate
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Fig. 1. Dendrogram: Hierarchical clustering of OCRR data (n = 30) using
the MSD distance metric. The 2-clustering segregates the compute-intensive
workloads (the top cluster).
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Fig. 2. Dendrogram: Hierarchical clustering of OCRR data (n = 30) using
Manbhattan distance between Stat14 feature vectors. The 4-clustering roughly
groups the compute-intensive workload traces, nsort traces, baseline traces,
and calib traces separately.

ANMI: Hierarchical clustering using MaxMed feature vector
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Fig. 3. ANMI plot based on hierarchical clustering of LCRF (n = 225),

LC (n = 111), and RF (n = 114) data using Manhattan distance between
MaxMed feature vectors. Higher ANMIs show that the clusterings do a better
job of distinguishing workloads on a single machine than across platforms.

clusterings on each per-machine subset of the LCRF data set
(with separate reference clusterings for each subset), as well
on the whole data set. In all cases, the reference clustering has
13 clusters (one per workload).

First, we cluster these three datasets based on the MaxMed
feature vector (see Section III-B), using hierarchical clustering.
By cutting the tree at different heights, we vary the resulting
number of clusters, as shown on the x-axis of Figure 3. The y-
axis shows the ANMI of each of these clusterings as compared
to the appropriate reference 13-clustering. The ANMI for
the cross-platform dataset is substantially lower than for the
per-platform datasets. This result indicates that, as expected,
it is more difficult to build unified power signatures across
hardware platforms than within a platform. Our conjecture is
that this is because the workload’s behavior actually varies
across the two platforms, rather than because the appropriate
normalization has not yet been identified. Normalizing the
power traces based on the system’s dynamic range did not
improve the results.

In Figure 4, we compare the four notions of distance
between time series discussed in Section III, using hierarchical
clustering on LC-only data. We find that the DTW and
MaxMed methods cluster traces by workload more effectively
than Statl4 or MSD. Furthermore, DTW and MaxMed yield
clusterings of similar quality. Results are similar for RF data.

We exhibit this comparison across all LCRF data in Fig-
ure 5. While no method appears to outperform clustering
data separately by machine, we see similar results: DTW and
MaxMed are superior for clustering time series by workload.

It is surprising that Statl4 performs so poorly, because
preliminary results (dendrograms) suggested otherwise. The
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Fig. 4. ANMI plot based on hierarchical clustering of LC data (n = 111):

Comparison of DTW, MaxMed, Statl4, and MSD notions of distance. DTW
and MaxMed outperform Stat14 and MSD.
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Fig. 5. ANMI plot based on hierarchical clustering of LCRF data (n = 225):
Comparison of DTW, MaxMed, Statl4, and MSD notions of distance. DTW
and MaxMed outperform Stat14 and MSD.

time series characteristics proposed by Wang et al. [27] work
well for certain kinds of time series data, but are of limited
usefulness in this domain, making the much higher dimension-
ality of this vector a liability. We use the Manhattan distance
to mitigate the problems associated with Euclidean distance
for high-dimensional data, but to little avail.

We also experiment with using k-means and dbscan as
clustering algorithms, to see if they generate different results
for our dataset. Recall that complete-linkage hierarchical clus-
tering (hclust) favors compact clusters, while dbscan’s notion
of density-reachability allows for clusters with pairs of points
that may be quite distant.

K-means requires a feature vector representation of traces
rather than a distance matrix, so the time-series distance
metrics are not appropriate inputs to this algorithm. However,
for Statl4 and MaxMed, the results are similar to the hclust
results presented in this section. By contrast, dbscan produces
ANMI values that are the same or worse than those produced
by hclust and k-means, even after tuning the e parameter. This
is not surprising, since dbscan can perform poorly for clusters
with widely varying densities. Our reference clustering does
exhibit this property: On the one hand, the baseline traces are
all similar; on the other hand, the peak power consumption of
workloads like calib and stream varies much more with the
resource allocation.

In conclusion, the ANMI data shows that MaxMed is the
more promising of our feature-based signatures, and DTW is
the more promising distance metric for our timeseries-based
signatures. These two representations yield comparable results
when used to cluster by workload. MaxMed has the advantage
of being compact, easy to compute, and more flexible (since
it is compatible with arbitrary distance metrics).

VI. CLASSIFICATION RESULTS

In Section V, we presented two findings that motivate using
classification to identify power traces. First, it is reasonable
to attempt to categorize traces by workload; and second,
statistical summaries such as the MaxMed feature vector are
reasonable ways to represent a power trace and to determine
the distance between two power traces. We use the LCRF data
set (n = 225) as input to a classifier that we train to identify
the workload of a given power trace. Because random forest is
relatively robust to overfitting [44], we use both formulations
of the feature vector power signature introduced in Section III:
MaxMed and Statl14.

Parameters to random forest are ntree and mtry (see Sec-
tion IV-D); having sampled several possible combinations,
we find that ntree = 2000 and mtry = 1 for MaxMed
(mtry = 7 for Statl4) yield favorable results. Figure 6 shows
the accuracy (measured using leave-one-out cross-validation)
of random forest with these parameters for MaxMed, Statl4,
and an additional feature vector, Stat3, which we will construct
and evaluate in this section. For each dataset, we are able to
classify traces with over 85% accuracy. The cross-platform
accuracy is comparable to the within-platform accuracy for
RF, but lower than that for LC. Finally, we see random forest’s
robustness to overfitting in the improved performance of the
Stat14 feature vector.
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Random forest also provides estimates of the relative
importance of each variable in the model. One such estimate
is the decrease in Gini index due to each predictor variable,
which measures how well that predictor partitions the data
by workload. As we train and test a random forest by leave-
one-out cross-validation, we accumulate the average Gini
importance over the 225 training sets. Figure 7 illustrates this
measure for each element of the Stat14 feature vector.

The MaxMed components are among the most important,
but the graph suggests that Serial Correlation is even more
important. This observation motivates the augmentation of the
MaxMed summary vector to form a new feature vector: Stat3.
Figure 6 shows the Accuracy of the random forest classifier
trained on Stat3 data.

Random forest’s importance measures also provide a prin-
cipled way to search the feature space for clustering the
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Fig. 8. ANMI plot based on hierarchical clustering of LC data (n = 111).

Stat3 and MaxMed feature vectors are comparable.

traces. Therefore, we return to clustering and compare the new
Stat3 feature vector to the MaxMed vector that we found was
successful; Figure 8 presents this comparison. Based on this
ANMI data, it is not obvious that Stat3 is superior to MaxMed
in this context, possibly because random forest is more robust
to overfitting than our clustering algorithms.

VII. CONCLUSION

This work is the first to quantitatively show that the power
consumption behavior of HPC workloads can be accurately
captured by very simple feature-based signatures. We show
that these concise signatures distinguish workloads from each
other just as well as vastly more compute- and space-intensive
time-series techniques.

The simplicity of these feature vectors is also surprising;
many of the features that Wang et al. [27] successfully used
to cluster time series were not helpful for our data. Within the
narrower realm of power-trace characterization in computing,
our power traces still exhibit little periodicity: at one extreme,
our individual HPC workloads lack the time-of-day or seasonal
variation found in datacenter traces. At another extreme, they
also differ from fine-grained processor-level measurements,
such as those provided by RAPL. At finer granularity, traces
show a high degree of periodicity and phase behavior as-
sociated with loops, which temporal aliasing smooths out
at our much coarser 1 Hz granularity. While some of our
workloads exhibit phases at this granularity, those phases are
not necessarily periodic. The two-pass nsort is a good example:
the first and second passes can be clearly distinguished in the
power traces, but each phase occurs only once. Overall, the
lack of periodic behavior simplifies the signatures.

Our goals for future work are to use this foundation
to develop workload-aware energy-efficient scheduling and



resource allocation policies while minimizing the burden on
users. We are also interested in expanding our dataset to
encompass more workloads, particularly accelerator-based and
heterogeneous workloads, and hardware platforms. Finally, our
results could be refined by answering the following questions:

To what extent is it possible to classify a power trace
in real time? How long does an application need to run
before its power signatures can be reliably classified?

How sensitive are these results to measurement accu-
racy and sampling rate? At what sampling rate does
periodic behavior emerge for these workloads?

We built and analyzed power traces from single-node
workloads. Is it possible to build power signatures for
multi-node workloads?

Since power measurements are often aggregated over
a cabinet, is it possible to disaggregate these measure-
ments and identify their constituent workloads?
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