
A Breadth-First Course in
Multicore and Manycore Programming

Suzanne Rivoire
Sonoma State University
March 12, 2010

Parallelism is everywhere

  Multicore: Scaling processor performance by
increasing the number of cores/chip

  Distributed/cloud/grid computing: Applications/
computations that scale to large numbers of
machines

“The free lunch is over.” [Sutter, 2005] – performance
now requires harnessing parallelism

2

When to introduce parallelism?
  In the OS course

  Traditional approach
  Has been used to teach new multicore

programming models [Rossbach, PPoPP ’10]

  Throughout undergraduate curriculum [Ernst,
ITiCSE ’08]

  Upper-level undergraduate elective
3

How to introduce parallelism?
  Lots of parallel programming APIs/models,

with new ones emerging all the time
  Typical parallel programming elective is a

graduate course focusing on a particular
(trendy, new) model

  For undergraduates, we tried breadth-first
  Avoid committing to a particular model
  Emphasize commonalities and underlying

algorithms

4

Outline
  Breadth-first course overview

  Goals
  Organization
  Structure

 Course content

  Evaluation

5

Course information
  Title: CS 385: Multicore and Manycore

Programming [elective]
 University: Sonoma State University
  Semester: Spring 2009
  Prereqs: CS2, introductory computer

organization
  Enrollment: 18 students, all undergraduate

6

By the end of this course, you will…
  Think parallel! Find task- and data-parallel

decompositions
  Analyze the performance of your code and

the barriers to scalability
 Understand developments in parallel

hardware and software
  Be better programmers in general

7

Course organization
Weeks Subject

1-2 Crash course in parallel decomposition, computer
architecture, and performance analysis

3-6 OpenMP

6-9 Intel TBB

10-14 nVidia CUDA

14-16 Readings on other programming models

8

Why these models?
  Accessible to C/C++ programmers
 Well supported, mature (enough)

infrastructure
 CPU- and GPU-based
 Different levels of abstraction

9

Course activities and assessments
  Lecture/discussion: 2 hours/week
  Lab activities: 2 hours/week supervised +

some independent work
  Projects: Optimizing matrix multiplication in

each model + 1 writing project
 Quizzes: 4 quizzes (one for each

programming model + the paper-reading)
 Comprehensive final exam

10

Outline
  Breadth-first course overview
 Course content

  Initial overview
  OpenMP, TBB, CUDA details
  Reading papers on other models

  Evaluation

11

Module 1: Overview of basics
  Lecture topics

  Overview of multicore challenges (View from
Berkeley)

  Parallel decomposition; task parallelism; data
parallelism

  Performance analysis: speedup, scalability
  Memory hierarchy, cache coherence,

synchronization

12

Module 1: Overview of basics
  Sample activities/assignments

  Parallelize this recipe!
  Practice mapping computations to threads by

“parallelizing” two embarrassingly data-parallel
algorithms

13

Module 2: OpenMP
 OpenMP background

  Simple API for shared-memory programming

  Established and widely supported (1998-)

  Support for data and (some) task parallelism

  Assignments
  Parallelize and tune code from Module 1

  Implement a data-parallel algorithm with
significant dependencies

14

OpenMP sample code
#pragma omp parallel for

for (i = 0; i < N; i++)

 a[i] = b[i] + 1;

15

Module 3: TBB
  TBB background

  Introduced by Intel in 2006
  C++ template library (very STL-like)
  High-level; hides implementation details

  Assignments
  Port previous assignments to TBB
  Use TBB’s concurrent container classes

16

TBB sample code
class some_class {

 …
 void operator()(const blocked_range
&range) const {
for (int i = range.begin();

 i!= range.end(); i++)
 A[i] = B[i] + 1;

}

};
parallel_for(blocked_range(0,N),

some_class(A, B), auto_partitioner());
17

Module 4: CUDA
 CUDA background

  Introduced by nVidia in 2007 for general-
purpose GPU programming

  Requires programmer to manage movement of
data between CPU and GPU

  Requires programmer to map computations to
threads and thread blocks on GPU

18

Sample CUDA code
kernel<<< gridDim, blockDim, 0 >>>(A, B);

__global__ void kernel(float* A, float* B) {

 unsigned int tid = blockIdx.x*blockDim.x +
threadIdx.x;

 A[tid] = B[tid]+1;

}

19

Module 5: Other models

20

  Papers read
  GPGPU: Owens et al, Proc. IEEE 5/2008.
  MapReduce: Dean et al, OSDI 2004.
  Transactional memory: Adl-Tabatabai et al,

Queue 12/06.
 Method: just-in-time teaching + discussion

  Students submit writeups shortly before class
  Their answers drive the day’s discussion

[Davis, SIGCSE ’09]

Sample just-in-time assignment
 Reading guide: roadmap of paper

  “Read the section on programming with
transactions. Understand the programming
examples and the graph. This section
describes the guarantees that a TM system
makes to the programmer, and the benefits to
correctness and performance.”

21

Sample writeup questions
 High-level comprehension:

  Explain in your own words why versioning is
needed and the difference between eager and
lazy versioning.

  Low-level:
  Explain Figure 2: what does it show, and why

does that result occur?

22

Project: Tutorial on one model
  Explain when the model is important/useful

 Guide the reader through a simple example
with some performance tuning/analysis

23

Outline
  Breadth-first course overview
 Course content
  Evaluation

  Learning objectives?
  Course structure and assignments?
  Future changes

24

Evaluation instruments
  End-of-semester survey and evaluations

 Reflections in student project reports
(throughout semester)

 Choice of model for final project

25

Good things
  Lab assignments

  Rated as most helpful component of course for 3
of the 4 learning outcomes

 CUDA
  By far the most popular model
  GPU “cool” factor? Bigger speedups? Low-level

control?
  Students preferred programming models in order

from low- to high-level
 Discussions of papers

26

Bad things
  Projects

  Limited shared hardware => flawed speedup
results and a lot of frustration

  Matrix multiplication: too staid a problem?
  TBB?

  Least popular model…hard to understand
performance, too much bureaucracy

  Worthwhile challenge to students?
  Valuable comparison point?

27

Open Questions
  Breadth-first?

  Class was evenly split between liking the
course as-is and wanting slightly more depth

  No one wanted pure depth-first (studying only
one model)

 Choice of programming models?
  New models, new infrastructure emerging
  Would keep GPU model (CUDA? OpenCL?)

but the rest is up for debate

28

http://rivoire.cs.sonoma.edu/cs385/

29

