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Parallelism is everywhere 

  Multicore: Scaling processor performance by 
increasing the number of cores/chip 

  Distributed/cloud/grid computing: Applications/
computations that scale to large numbers of 
machines 

“The free lunch is over.” [Sutter, 2005] – performance 
now requires harnessing parallelism 
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When to introduce parallelism? 
  In the OS course 

  Traditional approach 
  Has been used to teach new multicore 

programming models [Rossbach, PPoPP ’10] 

  Throughout undergraduate curriculum [Ernst, 
ITiCSE ’08] 

  Upper-level undergraduate elective 
3 



How to introduce parallelism? 
  Lots of parallel programming APIs/models, 

with new ones emerging all the time 
  Typical parallel programming elective is a 

graduate course focusing on a particular 
(trendy, new) model 

  For undergraduates, we tried breadth-first 
  Avoid committing to a particular model 
  Emphasize commonalities and underlying 

algorithms 
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Outline 
  Breadth-first course overview 

  Goals 
  Organization 
  Structure 

 Course content 

  Evaluation 

5 



Course information 
  Title: CS 385: Multicore and Manycore 

Programming [elective] 
 University: Sonoma State University 
  Semester: Spring 2009 
  Prereqs: CS2, introductory computer 

organization 
  Enrollment: 18 students, all undergraduate 
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By the end of this course, you will… 
  Think parallel!  Find task- and data-parallel 

decompositions 
  Analyze the performance of your code and 

the barriers to scalability 
 Understand developments in parallel 

hardware and software 
  Be better programmers in general 
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Course organization 
Weeks Subject 

1-2 Crash course in parallel decomposition, computer 
architecture, and performance analysis 

3-6 OpenMP 

6-9 Intel TBB 

10-14 nVidia CUDA 

14-16 Readings on other programming models 
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Why these models? 
  Accessible to C/C++ programmers 
 Well supported, mature (enough) 

infrastructure 
 CPU- and GPU-based 
 Different levels of abstraction 
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Course activities and assessments 
  Lecture/discussion: 2 hours/week 
  Lab activities: 2 hours/week supervised + 

some independent work 
  Projects: Optimizing matrix multiplication in 

each model + 1 writing project 
 Quizzes: 4 quizzes (one for each 

programming model + the paper-reading) 
 Comprehensive final exam 
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Outline 
  Breadth-first course overview 
 Course content 

  Initial overview 
  OpenMP, TBB, CUDA details 
  Reading papers on other models 

  Evaluation 
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Module 1: Overview of basics 
  Lecture topics 

  Overview of multicore challenges (View from 
Berkeley) 

  Parallel decomposition; task parallelism; data 
parallelism 

  Performance analysis: speedup, scalability 
  Memory hierarchy, cache coherence, 

synchronization 
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Module 1: Overview of basics 
  Sample activities/assignments 

  Parallelize this recipe! 
  Practice mapping computations to threads by 

“parallelizing” two embarrassingly data-parallel 
algorithms 
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Module 2: OpenMP 
 OpenMP background 

  Simple API for shared-memory programming 

  Established and widely supported (1998-) 

  Support for data and (some) task parallelism 

  Assignments 
  Parallelize and tune code from Module 1 

  Implement a data-parallel algorithm with 
significant dependencies 
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OpenMP sample code 
#pragma omp parallel for 

for (i = 0; i < N; i++) 

 a[i] = b[i] + 1;  
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Module 3: TBB 
  TBB background 

  Introduced by Intel in 2006 
  C++ template library (very STL-like) 
  High-level; hides implementation details 

  Assignments 
  Port previous assignments to TBB 
  Use TBB’s concurrent container classes 
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TBB sample code 
class some_class { 

 … 
 void operator()(const blocked_range 
&range) const { 
for (int i = range.begin(); 

   i!= range.end(); i++) 
 A[i] = B[i] + 1; 

} 

}; 
parallel_for(blocked_range(0,N), 

some_class(A, B), auto_partitioner()); 
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Module 4: CUDA 
 CUDA background 

  Introduced by nVidia in 2007 for general-
purpose GPU programming 

  Requires programmer to manage movement of 
data between CPU and GPU 

  Requires programmer to map computations to 
threads and thread blocks on GPU 
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Sample CUDA code 
kernel<<< gridDim, blockDim, 0 >>>(A, B); 

__global__ void kernel(float* A, float* B) {  

 unsigned int tid = blockIdx.x*blockDim.x + 
threadIdx.x;  

 A[tid] = B[tid]+1; 

}  
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Module 5: Other models 
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  Papers read 
  GPGPU: Owens et al, Proc. IEEE 5/2008. 
  MapReduce: Dean et al, OSDI 2004. 
  Transactional memory: Adl-Tabatabai et al, 

Queue 12/06. 
 Method: just-in-time teaching + discussion 

  Students submit writeups shortly before class 
  Their answers drive the day’s discussion 

[Davis, SIGCSE ’09] 



Sample just-in-time assignment 
 Reading guide: roadmap of paper 

  “Read the section on programming with 
transactions. Understand the programming 
examples and the graph. This section 
describes the guarantees that a TM system 
makes to the programmer, and the benefits to 
correctness and performance.” 
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Sample writeup questions 
 High-level comprehension: 

  Explain in your own words why versioning is 
needed and the difference between eager and 
lazy versioning. 

  Low-level: 
  Explain Figure 2: what does it show, and why 

does that result occur? 
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Project: Tutorial on one model 
  Explain when the model is important/useful 

 Guide the reader through a simple example 
with some performance tuning/analysis 
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Outline 
  Breadth-first course overview 
 Course content 
  Evaluation 

  Learning objectives? 
  Course structure and assignments? 
  Future changes 
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Evaluation instruments 
  End-of-semester survey and evaluations 

 Reflections in student project reports 
(throughout semester) 

 Choice of model for final project 
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Good things 
  Lab assignments 

  Rated as most helpful component of course for 3 
of the 4 learning outcomes 

 CUDA 
  By far the most popular model 
  GPU “cool” factor? Bigger speedups? Low-level 

control? 
  Students preferred programming models in order 

from low- to high-level 
 Discussions of papers 

26 



Bad things 
  Projects 

  Limited shared hardware => flawed speedup 
results and a lot of frustration 

  Matrix multiplication: too staid a problem? 
  TBB? 

  Least popular model…hard to understand 
performance, too much bureaucracy 

  Worthwhile challenge to students? 
  Valuable comparison point? 

27 



Open Questions 
  Breadth-first? 

  Class was evenly split between liking the 
course as-is and wanting slightly more depth 

  No one wanted pure depth-first (studying only 
one model) 

 Choice of programming models? 
  New models, new infrastructure emerging 
  Would keep GPU model (CUDA? OpenCL?) 

but the rest is up for debate 
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http://rivoire.cs.sonoma.edu/cs385/ 
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