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Abstract—The high-performance computing (HPC) commu-
nity has been greatly concerned about energy efficiency. To
address this concern, it is essential to understand and charac-
terize the electrical loads of HPC applications. In this work, we
study whether HPC applications can be distinguished by their
power-consumption patterns using quantitative measures in an
automatic manner. Using a collection of 88 power traces from
4 different systems, we find that basic statistical measures do a
surprisingly good job of summarizing applications’ distinctive
power behavior. Moreover, this study opens up a new area of
research in power-aware HPC that has a multitude of potential
applications.
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I. INTRODUCTION

In high-performance computing (HPC), energy efficiency
has become a major concern [1]. Many of the current leaders
on the TOP500 list [2] consume multiple megawatts, costing
agencies like the U.S. Department of Energy one million
dollars per megawatt per year. In the commercial sector,
Google’s data centers consume 300 megawatts, according
to the New York Times (Sep. 22, 2012). Higher energy
efficiency can help reduce the operating costs and carbon
dioxide emissions of these facilities.

Understanding the power consumption behavior of work-
loads and facilities is a critical step to improving energy
efficiency. If workload-specific power consumption patterns
do exist, they would be valuable in a variety of contexts.
For example, pattern-driven job and resource management
schemes (such as [3], [4]) can leverage application power
signatures to enhance their quality of service. The idea
of systematically identifying such patterns is new in HPC.
Most previous studies use visual inspection for a handful of
applications [5]–[10], but this work treats the problem more
thoroughly and efficiently.

Our central goal is to determine whether applications
exhibit distinctive power consumption behavior, which we
refer to as application power signatures, and to what extent

this behavior is independent of input data, runtime con-
figuration, and hardware platform. In particular, we want
to find out whether HPC applications can be distinguished
by their power traces using quantitative measures in an
automatic manner. Automation is important because it makes
the integration with systems software easier. This paper
presents an initial effort at this task.

The contributions of the paper are listed as follows.
• Formulating the problem as a clustering problem.

Given a collection of power traces, we seek to identify
a feature-based clustering algorithm that can cleanly
distinguish all (or most of) the power traces of one
application from the power traces of other applications.

• Establishing a baseline for the solution space. We
explored 63 different feature spaces using hierarchical
clustering. Based on the 88 power traces we collected
from 4 different machines, we identified the best feature
space as a base solution to the clustering problem.

• Showing that the quality of the baseline is surprisingly
good. We found that summarizing traces using basic
statistical measures yields clusters that are grouped first
by application, then by system, and then by application
class.

• Opening up a new area of research. We have only
explored a small portion of the solution space. In
addition, how to define the goodness of a clustering
result quantitatively is still a challenge. More broadly,
are there more clever ways to formulate the problem?

The rest of the paper is organized as follows. In Section II,
we describe the study of power signatures in HPC and in
other fields. Then we present our analysis approach in Sec-
tion III and an instantiation of this approach in Section IV. In
Section V, we discuss the preliminary results. We conclude
the paper and outline future work in Section VI.

II. RELATED WORK

As previously mentioned, the study of power signatures is
new in HPC. The term power signature has been mentioned



in the literature (e.g., [5]–[10]), but most references only use
the term qualitatively. The only exception, to the best of our
knowledge, is a use of mathematical models to capture the
power signatures of server power-management algorithms
based on published benchmark results [10].

In other fields, power signatures have been studied for
some time. One such field is cryptography research. In 1999,
Kocher et al. [11] presented an analysis of side-channel
attacks on embedded devices. The attacks are based on
collecting and analyzing the power traces of a device. In
the simplest form, an attacker visually interprets the traces
to identify the encryption algorithm used by the device.
A more advanced attack can uncover secret keys through
statistical analysis. Thus, understanding the power signature
of an encryption algorithm is a key focus in the field.

From another perspective, knowing the power signatures
of trusted software can help maintain system integrity.
For example, malware can be detected by comparing the
generated power signature with those in a database of trusted
signatures [12], [13]. Interestingly, the growing popularity of
energy-proportional computing in server design [14] has also
caused some concerns about privacy and security. Server
energy-proportional computing, in which power consump-
tion scales closely with workload, can expose properties of
the workload based on its power consumption. This is argued
to be both harmful to privacy and beneficial for malware
detection [15].

The smart-grid research community is also interested in
the study of power signatures. For example, they want to
know how to determine the operating schedule of home
appliances in a residential home from measurements made
at the electric utility service entry [16]. They call it non-
intrusive load monitoring (NILM). While NILM can signif-
icantly reduce sensor installation and maintenance costs, it
requires the knowledge of power signatures for the electrical
loads. As a result, there has been a substantial number
of power-signature studies done in this research area; for
example, [17]–[19] to name a few.

What we have discussed so far are mostly the uses of
power signatures. Given the variety of uses across several
fields, it can be expected that many methods have been
developed to study power signatures.

In terms of general methodology, our analysis method is
related to clustering of time-series data [20], [21]. In general,
there are three types of clustering methods: those working
directly with the raw data, those working indirectly with
features extracted from the raw data, and those working
indirectly with models built from the raw data [20]. Our
analysis method falls under the second approach: feature-
based clustering [22].

In feature-based clustering, the majority of feature extrac-
tion methods are generic in nature, but the extracted features
are usually context-dependent. Thus, a set of features that
works well in one context might not be relevant to an-
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Figure 1. The workflow of our analysis approach.

other [20]. In the context of HPC power signatures, we found
out that basic summary statistics perform surprisingly well.
It is unknown whether the more complex methods developed
for other fields would remain effective in our context.

III. THE APPROACH

Our approach to analysis starts with hypothesis formu-
lation, followed by data collection, feature extraction, and
cluster analysis, and finally ends with hypothesis verifica-
tion. Figure 1 depicts the workflow.

A. Hypothesis Formulation

Our hypothesis is that different runs of the same applica-
tion will exhibit similar power consumption patterns, even
when the input data changes. Ideally, these patterns should
allow these runs to be distinguished from runs of a different
application. However, this latter property may not hold in
reality; we may only be able to describe the power signature
of a class of similarly-behaving applications. For the former
property, we suspect that it is more likely to hold for runs
taken from the same machine than across different (brands
of) machines.

B. Data Collection

We measure and record the power consumption of various
application runs as power traces. A power trace is a set
of timestamped power measurements (in watts) collected
during an application run with a particular data input on
a specific machine.

As a basis for our analysis, we have amassed a collection
of power traces: measurements of power consumption sam-
pled once per second during an application’s execution. We
have collected power traces for 10 benchmarks on 4 different
machines. For most applications, we have collected traces
using multiple configurations and/or input data sets on each
machine.

C. Data Transformation

Data transformation generally refers to converting power
traces into a different representation to facilitate feature
extraction. This often occurs in geometric approaches for
feature extraction. For statistical approaches, this type of
data transformation is not needed. However, some statistical
approaches may perform data processing such as sampling,
noise reduction or data normalization.



D. Feature Extraction

Feature extraction casts power traces into a feature space
as points in the space. There are many feature spaces that we
can choose. For example, the feature space can be based on
the time domain or the frequency domain [15]. Frequency-
domain approaches are easier to carry out in general. They
can easily handle power traces of different lengths and can
ignore alignment issues that could arise in time-domain
approaches. However, they may have less predictive power
due to the loss of the temporal information.

E. Cluster Analysis

The goal of cluster analysis is to group points in a feature
space into clusters. This can be done manually or automat-
ically. Direct visualization of a feature space is a manual
method. However, it becomes challenging when the space
is high-dimensional. There also exist many automatic clus-
tering techniques. The popular approaches include density-
based clustering, centroid-based clustering, and hierarchical
clustering [23]. These techniques are generally parameter-
ized, and tuning the parameter values can be nontrivial.
In our experiments, we focus on hierarchical clustering.
Hierarchical clustering requires minimal tuning and yields
results that provide more insight than a simple listing of a
fixed number of clusters.

F. Hypothesis Verification

We effectively formulate application power signature anal-
ysis as a clustering problem. To verify the hypothesis, we
check if the runs of an application are in the same cluster or
not. In addition, the description of the cluster can be used
to describe the power signature of the application.

IV. EXPERIMENTS

In this section we detail an instantiation of the approach.
We will describe a database of power traces and the choice
of feature spaces and clustering technique.

A. Power Traces

We have collected 88 power traces from 10 benchmarks
and 4 machines. We ran each benchmark with at least two
different data inputs. The benchmarks are:

1) Nsort (nsort) [24].
2) STREAM (stream) [25].
3) Prime95 (p95) [26].
4) Linpack (linpack-cblas) [27].
5) TILT (sb-tilt) [28].
6) FFT1D (sb-fft1d) [28].
7) FFT2D (sb-fft2d) [28].
8) DGEMM (sb-dgemm) [28].
9) GUPS (sb-gups) [28].

10) Graph500 (graph500) [29].
Note that benchmark names with the sb prefix indicate that
they come from SystemBurn [28]. SystemBurn is a software

Table I
FOUR PLATFORMS USED IN DATA COLLECTION.

Machine RR OC LC RF
AMD Athlon Intel Core Intel Core Intel Core

CPU X2 4800+ i5-750 i5-750 i7-3770
2-core 4-core 4-core 4-core

GHz 1.0-2.5 1.2-2.67 1.2-2.67 1.6-3.4
RAM 4GB 8GB 8GB 8GB

NVIDIA NVIDIA NVIDIA NVIDIA
GeForce GeForce GeForce GeForce

GPU 9800 GT GTX 285 GTX 650 Ti GTX 670
Power 115-196W 120-226W 73-211W 74-312W
Traces 14 14 28 32

tool engineered to allow a system user to methodically
create a maximal system load on large scale systems for
the purposes of testing and validation.

Table I shows the configuration of the 4 machines.
These machines all run the Linux operating system. The
ondemand frequency scaling governor [30] was turned on
when we collected power traces. For these workloads, this
essentially means that the operating system will peg the CPU
at its lowest frequency when idle and its highest frequency
when busy. Intel Turbo Boost was turned off during data
collection.

To monitor power consumption, we used a Watts Up?
PRO power meter. This power meter reports instantaneous
power consumption every second. We think that this sam-
pling rate is sufficient to capture the steady-state behavior
of long-running HPC applications. The accuracy of power
measurement is 1.5% plus 3 counts of the reported value.

B. Features

The features of interest are basic summary statistics.
These features describe the histogram derived from a power
trace. We consider 6 features, listed as follows.

1) Maximum (Max).
2) Minimum (Min).
3) Mean.
4) Median (Med).
5) Range.
6) Standard deviation (Std).

The first four features describe the location of the histogram,
and the last two describe its scale.

C. Feature Spaces

We explore all possible combinations of the 6 features.
Each combination forms a feature space. For example, Mean
is a feature space, and MeanStd is another. There are a
total of 63 possible combinations. In fact, we consider more
than 63 feature spaces. As we will describe below, data
normalization increases the count by a factor of 10.

D. Data Normalization

Features may have different value ranges. For compa-
rability, feature values are often normalized before cluster



analysis. We consider two types of data normalization. Given
a matrix of feature vectors, where each row corresponds
to a power trace and each column a feature, one type of
normalization is to standardize for each row, and the other
is for each column.

Specifically, the row-based normalization divides each
feature vector by the idle power of the machine in order
to reduce the influence of the machine. The column-based
normalization scales feature values so that each feature
has approximately equal weight in distance calculations
during cluster analysis. The following lists all these data
normalization techniques.

1) Normalize row ri by machine M :

ri = ri/idle(M).

2) Normalize column ci to have Mean=0 and Std=1:

ci = (ci −Mean(ci))/Std(ci).

3) Normalize column ci to have Mean=0:

ci = ci −Mean(ci).

4) Normalize column ci by root-mean-square (RMS):

ci = ci/RMS(ci).

5) Normalize column ci to the range [0,1]:

ci = (ci −Min(ci))/Range(ci).

E. Clustering Technique

In this work we only consider hierarchical clustering.
Although there are other techniques available, hierarchical
clustering has a nice visual representation of the result. The
clustering result can be represented as a tree-structured graph
called a dendrogram. The dendrogram provides more insight
than simply showing the final clusters. It shows how each
cluster is formed. This additional information is extremely
helpful when we have to visually evaluate the goodness of
a clustering result.

We use the hierarchical clustering algorithm hclust [31].
The idea of hclust is to start with single-element clusters
and iteratively join the two closest clusters together until the
entire dataset is grouped in one large cluster. The algorithm
requires a definition of the distance between two clusters. In
this study we use the so-called complete-linkage distance,
i.e., the largest distance between pairs of points from each
cluster. This choice of distance tends to result in compact
clusters of points that are all relatively close to each other.

All clustering approaches requires a notion of distance
between a pair of points in the feature space. In this paper we
focus on the most common distance: the Euclidean distance.
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Figure 2. The results of applying hclust to feature space Med with power
traces collected from machine OC.

F. Implementation Notes

All data normalization, feature extraction, and cluster
analysis are performed in R, a free software environment for
statistical computing and graphics. We use the most recent
version 3.0.2. Hypothesis verification is done manually, by
visually checking the clustering results.

V. PRELIMINARY RESULTS

We begin our evaluation of feature spaces with the 32
traces collected on machines OC and RR. Restricting our
initial exploration to this subset serves two purposes. First,
since we are evaluating clusterings by inspection, using a
smaller dataset makes the results more tractable. Second, it
allows us to check the generality of our results by applying
them to the newer machines, LC and RF.

Using hclust, we compare the clustering results from
all 63 feature spaces, beginning with the one-dimensional
spaces and then adding more features. Then, we discuss
the impact of data normalization. Overall, the main finding
is that application-level power consumption patterns can be
distinguished based on a simple feature vector. Specifically,
the combination of a trace’s minimum and median power
provides reasonably good clustering results.

A. One-Dimensional Feature Space

On machine OC, feature space Med is considered the best.
It has correctly grouped the runs of an application in the
same cluster, as shown in Figure 2. Feature space Max is
considered the second best.
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Figure 3. The results of applying hclust to feature space Min with power
traces collected from machine RR.

On machine RR, the best are feature spaces Max and Min.
However, the quality of their clustering results is not as good
as Med on OC. Figure 3 shows the result from feature space
Min, in which the runs of benchmarks fft1d and tilt are not
correctly separated.

The results suggest that a single feature is insufficient
for distinguishing application-level power-consumption pat-
terns. Higher-dimensional feature spaces are needed. Fur-
thermore, features describing the histogram location are
essential for getting a good clustering result. Med, Max, and
Min are all such features.

B. Two-Dimensional Feature Space

For two-dimensional feature space, MinMed does the best
for machine RR. The best feature spaces for machine OC
are MaxStd, MaxMed, MedStd, and MeanStd. However,
MinMed is near-optimal, too. On the other hand, the four
best feature spaces for OC do poorly for RR. These results
suggest the consistent effectiveness of feature space Min-
Med. Most likely MinMed will do well across machines, and
it does. Figure 4 shows the clustering result of the power
traces from the two machines.

The figure shows that the runs of an application on
the same machine are grouped together. We also see three
application classes. One is the class of linpack-cblas, stream
with all CPU cores, and p95. Another one is the class of tilt
and fft1d. The third one is the class of nsort.

To verify whether the application classes are valid or not,
we compare the histograms of all the power traces visually.
We observe that linpack-cblas, stream, p95, and nsort exhibit
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Figure 4. The results of applying hclust to feature space MinMed with
power traces collected from machines RR and OC.

similar, unimodal patterns. The difference is in their location.
The histograms of linpack-cblas and p95 are located close
to each other. The histograms of nsort is located further to
the left (i.e., smaller wattage). Depending on the number of
CPU cores used, stream is either close to p95 or to nsort.

We also observe that benchmarks fft1d and tilt exhibit
a similar bimodal pattern. In addition, the histograms look
alike if they are from the same application.

Note that the runs of stream with 1 CPU core are not
in the same cluster as stream with all cores. This suggests
that, for application power signature analysis, the runs of an
application on a machine with two different configurations
can be as dissimilar as runs on two different machines.

Figure 5 shows the histogram of a sb-fft1d run on OC.
The histogram is generated with the bin width of one watt.
We can see that the values of median and maximum are
similar, all around 202 watts. In contrast, the value of mean
is about 187 watts.

It is not always the case that median is close to maximum.
Figure 6 shows the histogram of a p95 run on OC. In this
figure we see that median is actually close to mean and
distant from maximum. Both figures suggest that feature
spaces that can pinpoint the peaks of a histogram are
generally more effective. This explains why MinMed does
well in our case.

In statistics, there is a measure called mode that pinpoints
the peaks of a histogram. A weakness of the use of mode
is that its value is highly dependent on the bin width of the
histogram. Our exploration shows that mode is the worst for
the power traces of OC.
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Note also that both Min and Med are describing the
histogram location. Combining a location feature with a
scale feature turns out to be not as effective as combining
two location features. It remains to be seen whether this
observation holds in general.

C. Higher-Dimensional Feature Space

For higher-dimensional feature spaces, we found out
that none performs as well as MinMed. We also observe
a converging trend in higher-dimensional feature spaces.
Specifically, four- and higher-dimensional feature spaces
all generate sub-optimal results. This seems to suggest the
case of over-fitting. In other words, more features do not
necessarily lead to a better result.

D. Data Normalization

Exploring all possible combinations of the data normal-
ization techniques, we found out that column-based nor-
malization has little effect. In contrast, normalization by
machine has a detrimental effect. This suggests that data
normalization is not needed.
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Figure 7. The results of applying hclust to the feature space based on the
first principal component with power traces collected from machine RR.

E. Dimensionality Reduction

So far we have explored feature spaces constructed by
a subset of features. Each feature in the subset spans
one dimension of the feature space. We can also combine
multiple features into a new feature. This approach reduces
the dimensionality of the feature space. The combination
makes sense when the features are strongly correlated.

We found out that Max, Med, and Mean are strongly cor-
related. Features Range and Std are also strongly correlated.
Feature Min is not strongly correlated with any other feature.
These correlations are expected.

Through principal component analysis, we found out that
the first principal component accounts for 99% of variance.
In this component, Max, Med, and Mean receive the highest
weight, followed by Min. Features Range and Std receive
low weights, indicating that they are less important. Unfor-
tunately, clustering power traces based on the first principal
component does not lead to the desired result. Figure 7
shows the clustering result.

F. Further Validation

A fundamental weakness of the approach is that we try
to identify a clustering algorithm that would make our
hypothesis valid. We do not validate the hypothesis directly.
In other words, we are doing a modeling work. This leads
to the question of the generality of the derived model.

To check if feature space MinMed works well on other
machines, we analyzed the power traces collected from two
new machines LC and RF. To strengthen the validation, new
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Figure 8. The results of applying hclust to feature space MinMed with
power traces collected from machines RF and LC.

benchmarks were added. Figure 8 shows the resulting clus-
tering, which demonstrates that MinMed does a reasonably
good job.

G. Cross-Platform Signatures

With respect to cross-platform signatures, MinMed be-
comes less effective when considering power traces from
multiple machines. On the other hand, some application
classes remain the same across machines. For example,
stream and p95 are always in the same class for the 4
machines we tested. In other words, the histogram shapes
of some applications are platform-independent. This is good
news, as the power-management policies tailored for these
applications are likely to be more portable across platforms.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a study of application-level power
signatures, formulated as a clustering problem. Using hi-
erarchical clustering, we studied 63 feature spaces for a
collection of 88 power traces from 10 applications on 4
different systems. The experimental results show that simple
statistical summaries of each trace, particularly the combina-
tion of minimum and median, yield clusters that are grouped
first by application, then by system, and then by application
class. We discussed why this combination of features works
the best, which is related to the histogram shapes of the
power traces.

We plan to expand the research in the following directions.
• We want to collect power traces from more workloads,

especially those considered as more complex such as
SPEC CPU benchmarks. We are also interested in
workloads that also stress accelerators such as the GPU.

• We would like to explore other summary statistics,
distance functions, clustering methods, and data nor-
malization techniques. We are particularly interested in
statistical measures for time series data.

• Time-domain approaches are yet to be explored. The
combination of frequency-domain and time-domain ap-
proaches is also possible.

• We will need to develop automated methods to evaluate
the goodness of a clustering result or the similarity of
two different clustering results.

• We desire to understand external factors that can affect
clustering, such as the accuracy and the sampling rate
of power measurements.
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