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Abstract—Prior work has shown that power consumption
traces of HPC workloads exhibit distinctive statistical character-
istics, which allows the workload that generated a given power
trace to be inferred with high accuracy. However, these power
signatures apply to the entire power trace, with no ability to break
it down further into phases or to recognize novel combinations
of known workloads.

In this work, we propose and evaluate a mechanism for
partitioning a power trace into phases and matching each phase
to a known kernel or workload. We evaluate this technique on a
set of 388 power traces collected from 21 benchmarks, including
CPU-intensive system stressors; the NAS Parallel Benchmarks;
and Mahout data analytics workloads. Our technique is able to,
on average, attribute 78% of the points in a concatenated trace
to the correct kernel.

I. INTRODUCTION

Power constraints and energy costs loom large in high-
performance computing. Understanding workloads’ power
consumption behavior can help schedulers to optimize per-
formance under a power constraint. Prior work has shown that
HPC workloads exhibit distinctive power consumption patterns
and that, given a power consumption trace, the workload that
generated it can be predicted with high accuracy [1]. However,
this past work was limited in two related respects:

1) The workload identification operates at the granular-
ity of an entire power trace or application, with no
ability to drill down into parts of the trace.

2) In order to match a power trace to the workload that
generated it, there must be prior power traces col-
lected from that exact workload. Novel combinations
of known kernels are unrecognizable.

In this work, we propose a method of examining a power
trace and identifying the series of known kernels that it
comprises, rather than matching the entire trace to a single
application. In addition to providing finer-grained information
about the trace than previous approaches, this ability also
simplifies collection of the training database of power traces,
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since it only needs to contain examples of each individual
kernel rather than every possible combination of kernels.

In our experiments, this phase detector correctly attributes
an average of 78% of the points in a power trace to the correct
kernel that generated them. The accuracy of the underlying
whole-trace workload identifier is 85%, which suggests that
our approach is highly successful at correctly partitioning the
trace into phases.

After covering related work in Section II, we describe our
4-step process for segmenting a trace into its constituent ker-
nels in Section III. In Section IV, we present our experimental
setup and results. We conclude with a discussion of future
work to extend and generalize our techniques.

II. RELATED WORK

Many previous studies have proposed methods of identify-
ing phases in a program’s execution. Some of the techniques
were originally developed in the context of reconfigurable
computing, with the goal of deciding when the workload had
changed sufficiently to justify reconfiguring the processor [2].
More recently, phase recognition has become important in
selecting appropriate dynamic voltage and frequency scaling
(DVFS) settings for processors.

Most of this work, even if the goal is power and energy
savings, recognizes phases based on program characteristics
or hardware performance counters rather than directly from
power traces. A common approach is to create a vector of
performance counter values (an execution vector) for each
time-slice of a program execution. Then, phase changes can be
detected when the distance between adjacent vectors exceeds
some threshold, and phase recognition can also be achieved
with a distance computation. Chetsa et al. use this technique
to partition HPC workloads into CPU-, memory-, and I/O-
intensive phases with the goal of saving energy by selecting
appropriate hardware settings for each phase [3]. Paul et al.
used hardware counters to find phases in heterogeneous CPU-
GPU workloads to drive DVFS decisions. Like us, they focus
on applications that consist of a series of diverse kernels [4].
Ioannou et al. use patterns of MPI calls as the basis for their
program phases [5]. Peraza et al., citing the lack of portability
of hardware performance counters, use offline interprocedural
trace analysis to determine DVFS phases [6]. One of few
studies to use power as the basis for phase detection was done
by Isci et al., who used vectors of estimated power values in 22
different parts of a processor chip at each sampled execution
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point [7]. However, the actual phase detection and recognition
techniques they used are based on vector distance, similar to
Chetsa’s work with execution vectors.

Because we are working with only a single time series
(the power trace) and attempting to map each of its phases
to a specific kernel rather than a generic workload class, the
techniques we use draw more heavily from time series analysis.
Our phase recognition problem is essentially the inverse of
the well-known problem of subsequence matching [8]. In
subsequence matching, the training set would consist of long
traces, and the task is to match a shorter query trace to a subset
of a longer trace. For us, the training set consists of short traces
or kernels, and our task is to decompose a long trace into a
concatenation of these shorter kernels.

III. PHASE DETECTION METHOD

We assume a training set of labeled power traces: that is,
a set of tuples (PowerTrace,Workload). In this report, we
will refer to the workloads represented in this training set as
kernels because they are the smallest units that our method
will be able to recognize, even if they are internally complex.

We also assume an unlabeled test trace, consisting of a
concatenation of kernels that are present in the training set.
The specific power traces being concatenated are not assumed
to appear in the training set, but the workloads to which they
belong are.

Our goal is to decompose the test trace into its constituent
kernels and accurately identify each kernel. The output of our
algorithm will be a list of non-overlapping time intervals, each
one labeled with the kernel inferred to be running in each
interval.

Our approach to decomposing a trace into phases is as
follows:

1) Identify change points corresponding to possible
phase boundaries in the test trace.

2) Identify candidate phases (possibly overlapping),
where each phase is an interval starting at either the
beginning of the trace or a change point, and ending
at either a change point or the end of the trace.

3) Attempt to identify the task type of each candidate
phase.

4) Choose a final partition of the trace from among the
candidate phases.

A. Change Point Detection

Detecting abrupt changes in the statistical properties of
a time series is a well studied problem with applications in
a variety of fields. Fryzlewicz provides a good overview of
different approaches to this problem [9]. In general, there is a
tradeoff between more conservative methods that fail to detect
obvious changes in the series, and overly sensitive methods
that detect many false positives. Our techniques work best if
the identified change points are a superset of the real phase
boundaries, but there is a substantial computational cost to
processing spurious change points.

Our method is not tied to a specific change point detec-
tion algorithm, but we have evaluated it using a variant of

binary segmentation. Binary segmentation is a classic change-
point detection algorithm that initially finds, at most, a single
change point and then recursively partitions the series at the
change point, stopping when it can no longer find a change
point. Change points are detected by measuring variations in
some quantity (such as the mean) and using a test such as
CUSUM [10] to determine whether the change exceeds some
threshold. This algorithm is relatively intuitive and has low
computational complexity (O(NlogN)). However, it is not
guaranteed to find an optimal set of change points, and it can
perform poorly when the spacing between consecutive change
points is short. For these reasons, we use the Wild Binary
Segmentation (WBS) variant, which looks for change points
in random subintervals of each partition, works better in time
series with change points that are numerous or closely spaced,
and allows for use of a penalty function to optimize some
information criterion [9]. In this work, we use the Bayesian
Information Criterion penalty function, but other standard
penalty functions gave nearly identical results. We evaluate
the accuracy of change point detection in Section IV-C.

B. Candidate Phase Identification

The next step is to generate candidate phases from pairs
of change points. We then build a graph with a node for each
change point, as well as for the start and end of the trace, and
an edge for each candidate phase.

The minimal approach is to use only pairs of adjacent
change points, which has the advantage of cleanly partitioning
the trace. However, with this approach, a single spurious
change point has the potential to render all subsequent phases
unrecognizable.

The maximal approach is to allow every pair of change
points, including the beginning and end of the trace, to be a
candidate phase. This is the most computationally complex
approach, since it involves applying phase recognition to
each pair of points, and it also maximizes the complexity of
choosing the final partition of the trace.

The results presented in this paper use the maximal ap-
proach of including all possible edges, which is feasible given
the length of our traces and the number of detected change
points. In other contexts, it may be necessary to prune some
edges before proceeding.

C. Phase Recognition

Once the candidate phases have been identified, the next
task is to match them to kernels in the training set. To do
so, we train a random forest classifier [11] that can recognize
individual kernels from their power traces. We follow the
method of Combs et al. [1] in representing the kernels as
vectors of statistical features such as mean, standard deviation,
serial auto-correlation, and self-similarity. In addition to the 14
features used in that work, we also include the four highest-
order coefficients, excluding the first coefficient, of a discrete
Fourier transform. When broken up by real and imaginary
components, we get 8 additional features. In order to directly
compare DFT coefficients of different-length phases, a phase
is cropped if its length exceeds some constant N . If the phase
length is shorter than N , the phase is padded with zeroes. If
N is large, there is a possibility that this zero-padding ties
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the DFT coefficients to the length of the trace, thus indirectly
using the phase length as a feature for phase recognition.
This may not be desirable if the goal is to recognize the
workload across different hardware and input data. However,
our testing indicates that length alone does not account for the
increase in accuracy attributable to the DFT features, as seen
in Section IV-D, Table V.

We also evaluated R*-trees [12] storing vectors of DFT
coefficients, which have been used in prior work on time-series
similarity [13]. However, we found that their accuracy declines
precipitously if the placement of the detected change points is
imperfect. Furthermore, their output does not lend itself as
easily to selecting the final partition of the trace. They return
a list of intersecting or nearby traces to the query trace, which
then needs to be translated into a set of edge weights (see the
next section).

D. Choosing Final Phase Set

Once each candidate phase has been assigned to a kernel,
the final step is to select the set of candidate phases that best
partitions the trace. We do this using our graph representation,
where nodes are change points and edges are candidate phases.
To assign each edge a weight, we use two artifacts of the
random forest prediction process. The first is the certainty of
the prediction, which is simply the fraction of the decision trees
in the random forest that “voted” for the predicted workload.
For our dataset, which includes traces from 21 workloads,
this value will be between approximately 0.05 (if the vote is
evenly split among all workloads) and 1 (if the decision trees
unanimously “vote” for the same workload).

The other feature is the proximity of the candidate phase
to the other traces in its predicted workload. Random forest
classification yields an intuitive measure of the proximity of
two traces, based on tracing the traces’ paths through the
individual decision trees that make up the random forest: if
two traces are very similar, they should follow the same path
through a larger percentage of the trees than two traces that are
very different. The pairwise proximity is thus defined as the
fraction of trees for which the two traces being compared fell
into the same terminal node. We use the maximum pairwise
proximity between the candidate phase and each of the other
phases in its predicted workload.

To compute the final edge weight for each candidate phase,
we average the certainty and the proximity (both of which are
values between 0 and 1). We then multiply this product by
the length of the interval represented by that candidate phase.
Otherwise, a succession of many short phases with relatively
low certainties and proximities could appear more attractive
than a single long phase with very high certainty and proximity.
The problem of choosing the final partition, then, corresponds
to a longest-path search through the graph, from the node
representing the start of the trace to the node representing the
end of the trace.

IV. RESULTS

A. Dataset

Our training set consists of 388 power traces from 21
different kernels, as Table I shows.

TABLE I. KERNELS IN OUR 388-TRACE DATASET

Family Name Description
NPB [14] bt block tri-diagonal solver

cg conjugate gradient
ft discrete 3D FFT
lu Gauss-Seidel solver
sp scalar penta-diagonal solver
ua unstructured adaptive mesh

Mahout als alternating least-squares recommendation
bayes naı̈ve Bayesian classification (2 implemen-

tations)
sgd stochastic gradient descent
kmeans k-means clustering (2 implementations)

SystemBurn [15] tilt
fft1d
fft2d
dgemm
gups
scublas-dgemm DGEMM-CPU concurrent with cuBLAS-

GPU
Other nsort [16] external sort

p95 [17] Mersenne prime finder
stream [18] STREAM memory bandwidth benchmark
graph500 [19]
baseline active idle

For the Mahout data analytics “kernels,” which are gen-
erally the most complex, we ran each kernel on at least two
different input datasets of different sizes. All of those datasets
are provided with the Apache Mahout download, except for
LastFM3601, which was used in ALS.

For each NPB kernel, we collected data for the serial
version and the OpenMP version with 1, 4, and 8 threads,
In addition, we collected data for the MPI versions of all NPB
kernels except ua. For cg, ft, and lu, we collected data for 1,
4, and 8 MPI processes. The bt and sp kernels, which require
a square number of processes, were run with 1 and 4 MPI
processes.

The benchmarks from SystemBurn are primarily designed
to stress the CPU. SystemBurn is a tool that allows the user
methodically create a maximal system load for testing and
validation purposes, and the benchmarks listed are among the
sample workloads it provides. For both SystemBurn and the
benchmarks in the “Other” category, we ran each benchmark
multiple times, with at least two different data inputs, and
with different configurations (e.g. number of cores) whenever
possible.

We collected power traces on two single-node systems, as
shown in Table II. We used system RF for the Mahout and NPB
traces, and both systems for the SystemBurn and Other traces.
Both machines run Linux with the ondemand CPU frequency
scaling governor and with Turbo Boost disabled. Wall power
was sampled at 1 Hz using a WattsUp? PRO power meter,
whose accuracy is ±1.5% plus 3 counts of the reported value.

These systems hardly represent the state of the art in
personal computing, let alone HPC. However, they provide a
starting point for this analysis, and we hope to compare these
results with data from more modern or more parallel systems.
If the results are similar, it would indicate the generality
of these techniques for phase detection in HPC systems. If
not, it would yield insight into the factors that influence an

1Available at at
http://mtg.upf.edu/static/datasets/last.fm/lastfm-dataset-360K.tar.gz.
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TABLE II. SYSTEMS USED IN DATA COLLECTION

Machine LC RF
CPU Intel Core i5-750 Intel Core i7-3770
Cores 4 4
GHz 1.2–2.67 1.6–3.4
RAM 8 GB 8 GB
GPU GeForce GTX 650 Ti 1GB GeForce GTX 670 2GB
Power 85–252 W 74–309 W

application’s power consumption pattern and the limits of
phase detection.

B. Evaluation Procedure

For each of our repeated evaluation runs, we choose five
traces at random and remove them from the training set. We
concatenate the removed traces, in random order, to form a
longer trace (the test trace). The goal is to automatically learn
a model from the training set that allows us to partition the
test trace into its constituent kernels. Because the concatenated
kernels should come from the same machine to simulate a full
application, we use only kernels from RF in the test traces.
We still leave the LC traces in the training set.

One subtle but important point is how the traces are
concatenated. Our traces were all collected with idle time at
the beginning and end of the trace. Some of this idle time is an
artifact of the measurement process in order to ensure that the
power meter captured the full execution of the workload, and
some of it is the ramp-up or ramp-down of the actual kernel.
Unfortunately, there is not an easy way to disambiguate the
two. Therefore, when we concatenate two traces, the idle time
at the end of one trace blends seamlessly with the idle time at
the beginning of the next. No phase detection algorithm should
reasonably be expected to perfectly break what appears to be
an uninterrupted idle period into two phases. We therefore do
not penalize our phase detector for attributing these fused idle
periods to the “baseline” kernel.

Having these semi-artificial idle phases in the test trace
makes our task easier in some ways and harder in others.
It makes spotting legitimate change points relatively easy,
although a real application that concatenated a series of kernels
would likely also have some sort of detectable ramp-down
followed by a ramp-up. It is important to note that selecting
the right subset of the identified change points is still nontrivial
and that traces can have internal idle periods that should not
be attributed to the “baseline” kernel.

C. Change Point Detection Accuracy

The first step in our method of phase detection is iden-
tifying change points in the concatenated test trace. Ideally,
the change point detector will detect a superset of the actual
change points that separate the concatenated kernels. If it fails
to detect a true change point, we will misidentify at least some
points in the trace. On the other hand, detecting a large number
of false-positive change points will significantly increase the
computational complexity of the remaining steps of phase
detection, and it could also lead to a greater likelihood of mis-
partitioning the trace.

We quantify these two situations by evaluating the preci-
sion and recall of our change point detector. The precision

is the fraction of our identified change points that are true
detections. The recall is the number of true detections divided
by the total number of change points in the trace. A detection
counts as true if it is within some distance ε of the actual
change point.

In addition to a value of ε, the algorithm we use for change
point detection requires a ceiling Kmax on the number of
change points to detect. The best choice of Kmax depends
on the complexity and length of the trace. By setting Kmax to
the square root of the trace length, scaled by some constant
S, we observed good results for our data set. Table III shows
the average precision and recall over 100 runs, with S held
constant at 0.5, for two different values of ε: a stringent value
of 3, and a more lenient value of 10.

TABLE III. PRECISION AND RECALL OF CHANGE POINT DETECTION
FOR DIFFERENT VALUES OF ε, WITH THE MAXIMUM NUMBER OF CHANGE

POINTS SET TO HALF THE SQUARE ROOT OF THE TRACE LENGTH

ε = 3 ε = 10
Precision 0.39 0.36
Recall 0.99 0.98

Figure 1 shows the distribution of recall and precision for
ε = 3. The recall is consistently high, with the precision more
variable depending on the complexities of the concatenated
traces. We also experimented with varying S. Increasing the
value of S will increase the possible number of change points
detected, which increases precision and decreases recall.

Fig. 1. Distributions of change-point detection recall (left) and precision
(right) over 100 runs with ε = 3

D. Overall Phase Detection Accuracy

Our objective is to maximize the number of data points in
the test trace that are attributed to the correct kernel, a metric
that covers both the placement of change points and matching
phases to the correct workload. Table IV shows an example of
how we calculate accuracy. This is a simplified example and
not a real trace from our dataset. In this example, the test power
trace consists of three concatenated kernels: A, B, and C. The
phase detector correctly identifies the first phase as kernel A,
but extends it by an extra 50 data points, so all 400 data
points in the actual phase A were correctly detected. The phase
detector also correctly identifies the second phase as B, but the
endpoints of the phase are misidentified, yielding 445 correct
points in phase B. Finally, the third phase is misidentified as
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kernel Z. Therefore, we would score this sample as 845/1000
data points correct.

TABLE IV. EXAMPLE: CALCULATING PHASE DETECTION ACCURACY
ON A MADE-UP POWER TRACE WITH 1000 SAMPLES

Actual Phases Predicted Phases Points correct
Interval Kernel Interval Kernel
[1, 400] A [1, 450] A 400

[401, 900] B [451, 895] B 445
[901, 1000] C [896, 1000] Z 0

Figure 2 gives a histogram of this measure of accuracy over
300 runs. The phase detector performs relatively consistently
over all of the test traces, without the bimodal distribution one
would expect if the phase detector often makes an early wrong
decision and fails to recover. The mean accuracy is 78% over
these runs.

Fig. 2. Histogram of phase identification accuracies over 300 test traces

Figure 3 further illustrates that early mispredictions do not
lead to unrecoverable errors later in the trace. To calculate each
bar, we evaluate the accuracy over an interval of the points in
the concatenated trace (the first 10% of the points, the next
10%, etc.). The distribution is relatively flat, indicating that our
phase detection does not lose accuracy late in the trace. The
slight increases for the first and last deciles can be attributed to
the relative ease of identifying the initial and final idle phases
in the concatenated trace.

Fig. 3. Histogram of phase detection accuracy at different points in a trace

As discussed in Section III-C, in order to calculate the
DFT coefficients that are used as phase recognition features,
we pad or truncate a candidate phase to some value N .

TABLE V. EFFECT OF DFT COEFFICIENTS ON PHASE RECOGNITION
ACCURACY WITH DIFFERENT FIXED PHASE LENGTH N

N Accuracy Note
not set 52%
not set 69% actual phase length used as additional feature
1024 78%
2048 83%

The question is whether the selection of N is essentially a
proxy for trace length. Table V provides some reassurance on
that front. Without selecting a fixed N , the DFT coefficients
become a fragile basis for phase identification, with an overall
accuracy of only 52%. If the actual phase length is added as a
feature, the accuracy increases to 69%. However, fixing N to
either 1024 or 2048 yields higher accuracy than length alone,
indicating that the DFT coefficients do provide additional
information helpful for recognizing the phase.

V. CONCLUSION AND FUTURE WORK

This study shows that a single power trace can be broken
down into a series of kernels with high accuracy. A change
point detection algorithm reliably identifies a superset of the
actual transitions between kernels, which is then refined using
feedback from a classifier that attempts to match intervals in
the trace with known kernels.

In future work, we would like to further test the generality
of this approach by varying the transition between kernels.
In this work, there is an idle period between each pair of
kernels, but what if the transition were more seamless, without
a full ramp-down of one kernel and ramp-up of the next?
Moreover, it remains to be seen how our method deals with
traces consisting of a mix of known kernels with unknown
kernels or noise.

It would also be useful to develop heuristics for reducing
the computational complexity of our approach by pruning
candidate phases when the number of identified change points
is high. Finally, we would like to extend this work to more
realistic HPC settings to test a wider range of configurations
and datasets for each workload.
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