
Star-Cap: Cluster Power Management Using
Software-Only Models

John D. Davis
johndavis@gmail.com

Suzanne Rivoire
Sonoma State University
Rohnert Park, CA, USA

rivoire@sonoma.edu

Moisés Goldszmidt
Microsoft Research–Silicon Valley

Mountain View, CA, USA
moises@microsoft.com

Abstract—Star-Cap is a high-fidelity, real-time power manage-
ment system for clusters. Star-Cap’s cluster power management
module uses software-only power models to implement a proac-
tive power capping mechanism with the ability to distribute a
cluster’s power budget non-uniformly across nodes. We evaluated
Star-Cap on a variety of MapReduce-style workloads running
on a low-power cluster. Depending on application and platform,
Star-Cap improves cluster throughput by 14–43% compared to
using a uniform power cap distribution policy with a purely
reactive power capping mechanism, even one based on real
physical measurements. Furthermore, Star-Cap maintains cluster
throughput while reducing overall cluster power budget by 14%
with no additional capital or operating cost. Star-Cap’s proactive
power capping mechanism also improves response time to power
cap violations by a factor of 2 to 10. Star-Cap’s overhead for
collecting, computing, and reporting data is less than 1% CPU
utilization.

I. INTRODUCTION

Current data centers cost about US$10 million per megawatt
to build, and approximately 40% of the total cost of ownership
is related to energy [1]. Active server power management can
enable high and efficient utilization of this expensive power
infrastructure and at the same time avoid the possibility of
causing a catastrophic failure. Unfortunately, current commer-
cial server power management solutions involve additional
hardware and software [2], [3], which can double the cost
of a server over its 3–5 year lifespan.

In this work, we present a power capping framework, Star-
Cap, that incorporates software-based models of power con-
sumption, rather than physical measurements, to enforce node-
level power budgets. By using high-fidelity, low-overhead
models, Star-Cap removes the need for physical measurement
infrastructure to implement power capping. The ability to cap
power based on models alone is particularly useful for new
low-cost server designs, like the Open Compute Project, that
have no means to monitor their own power consumption [4].

Star-Cap also allows the power caps for individual nodes to
adapt to the demands of the workload. Large-scale applications
generally allocate different functions to nodes in the rack
for locality, matching this non-uniform allocation policy. The
results we have obtained in applying Star-Cap to a variety of
platforms and applications are:

1) For a given power budget, a non-uniform capping policy
improves cluster throughput by 14–43% compared to a
reactive, uniform capping policy.

2) Star-Cap reduces violations by a factor of 2–10 compared
to a reactive, uniform power capping policy using power
meters.

3) The overhead of the power modeling and management is
less than 1% CPU utilization.

Given these results, we propose the Star-Cap techniques as
a worthy alternative to measurement-based techniques used to
improve efficiency while reducing data center power infras-
tructure costs. The rest of this paper is organized as follows.
We address related work in Section II. Section III describes our
clusters, workloads, measurement infrastructure and modeling
technique. Section IV presents our power capping algorithm
and software system, and Section V evaluates this system. We
conclude with Section VI.

II. RELATED WORK

Fan et al. estimated that capping power 1–2 percent of the
time would allow them to fit 11 to 24 percent more servers
in a fixed power budget [5], but they did not propose specific
mechanisms for doing so. Power capping with Star-Cap is
a mechanism to realize their goal of fully utilizing the data
center power infrastructure.

Of the approaches to power capping that have been pro-
posed, ours is most similar to the ad-hoc preemptive and
reactive policies presented by Ranganathan et al. [6]. Because
our power models use more features that contribute to dynamic
node-level power, resulting in a more accurate model, we
can achieve better performance and less oscillation for high-
utilization workloads. Alternatively, several researchers have
proposed control-theoretic approaches to power capping [7]–
[12]. These approaches may provide better guarantees of per-
formance and stability, but at the price of increased complexity.

Most previous power capping studies have used either
measured power [8], [9] or simple models based on CPU
frequency and/or utilization [6], [7], [13]–[15]. Most previous
work has used linear models [5], [16], [17] or models that
do not capture interaction between predictors [13]. Cochran et
al. [18] apply more sophisticated machine learning techniques
but base their models on more intrusive hardware performance
counters and only examine individual nodes. Our work is the
first to apply more comprehensive high-level models to capture
the systems’ full dynamic range and account for node-to-node
variability [19], [20].

Most previous work in power capping has used processor
frequency state as the main or only actuator [6], [7], [9],
[11]–[14], [21], [22]. We also use DVFS to demonstrate Star-
Cap’s capabilities, yet our models are based on a variety of
system metrics and not solely the CPU. Nothing prevents
Star-Cap from being extended to exploit other power man-
agement hooks when available. Promising candidates include
application-level parameters to trade off performance and
QoS or power [23], core parking, component-level low-power
states [24], application-level throttling [23], low-power hard
drive modes [25], and low-power networking modes [26].

III. METHODOLOGY

Star-Cap relies on accurate power models, which we build
using only OS-level performance counters as predictors. This
section explains our approach to power modeling and describes
the workloads and hardware platforms on which we evaluate
Star-Cap. The information in this section is condensed from
Davis et al. [20].

A. Power models

We begin by running a set of training benchmarks while
collecting over 200 OS-level, hardware-independent counters.
We use a stepwise regression to reduce this feature space to a
handful of the most significant features, specific to the given
hardware platform. For the low-power platform we evaluate
in this paper, the features are

• Memory: cache faults/sec
• Memory: pool nonpaged allocations
• Disk: total disk time %
• Processor utilization
• File system pin reads/sec
• Total peak page file bytes
• Processor 0 frequency (all cores used the same frequency)
To predict power consumption, we fit a piecewise quadratic

function of these OS-level performance counters. The piece-
wise quadratic model captures two important intuitions:
Piecewise A feature such as CPU utilization may increase the

total system power at different rates in different regions
of operation. Piecewise models allow us to separate a
feature’s values into intervals with different coefficients.

Quadratic Quadratic models capture interaction between pre-
dictors, rather than modeling power as a linear combina-
tion of individual predictors. This is particularly useful
in capturing the relationship between CPU frequency and
other predictors.

More formally, we use a function P̂ of the high-level
performance counters, which are represented by (x1, . . . , xn).
The form of this model is:

P̂ (x1, ..., xn) = a0 +
∑
i

∑
j

ai,j ·Bs
i (xi, ti) ·Bs

j (xj , tj) (1)

Fitting the model requires finding the following parameters:
• The coefficient ai,j for each pair of performance counters
(i, j)

• The set of knots ti for each performance counter i

TABLE I
CLUSTER NODE DETAILS

Mobile cluster Server cluster
Processor Intel Core 2 Duo AMD Opteron

2-core 2 × 4-core
2.26 GHz 2.0 GHz

DRAM 4 GB DDR3-1066† 32 GB DDR2-800
Disk 1 Micron SSD 2 × 10K RPM SATA
Power Range 25–46 W 135–190 W
CPU TDP 25 W 50 W
OS & Filesystem Win2K8 Server R2, NTFS

† Maximum DRAM capacity

• The signs Bs
i (positive or negative) for each basis func-

tion.
In this quadratic model, the parameter s can be a positive

(+) or negative (−) sign, and the basis functions Bs
i are hinge

functions. B+
i (x, t) takes a value of 0 if x ≤ t and a value of

x−t otherwise. Similarly, B−
i takes a value of 0 if x > t and a

value of t−x otherwise. The t thresholds are called knots, and
a feature can be responsible for multiple knots. The MARS
algorithm [27] selects the knots and fits the parameters, which
determine how the basis functions interact. We restrict this
interaction to degree 2.

We use Friedman’s Multivariate Adaptive Regression
Splines (MARS) algorithm to automatically fit the quadratic
model parameters from training data [27].

Overall, this model provides a balance between low over-
head (less than 1% CPU utilization) and high accuracy in the
presence of node-to-node variability [19].

B. Hardware and software infrastructure

We trained power models and deployed the Star-Cap system
on the five-node homogeneous clusters described in Table I.
We only present results in Section V for the mobile cluster
because the results for the server cluster are similar.

We ran an assortment of workloads using the Dryad
and DryadLINQ distributed application framework [28], [29].
Some workloads are CPU-intensive, while others are domi-
nated by disk or network activity. We used a tenth of the data
for training and the rest for testing. The workloads used are:
Sort. This workload sorts 4GB of data with 100-byte records.

This workload has high disk and network utilization.
PageRank. This workload runs a graph-based page ranking

algorithm over the ClueWeb09 dataset1, a corpus of
about 1 billion web pages. PageRank has high network
utilization.

Primes. This workload checks for primeness of each of
approximately 1,000,000 numbers on each of 5 partitions
in a cluster. This workload is CPU-intensive and produces
little network traffic.

WordCount. This workload reads through 50 MB text files on
each of 5 partitions in a cluster and tallies the occurrences
of each word that appears. It produces little network
traffic.

1Available at http://lemurproject.org/clueweb09/

	

Machine	 1 Machine	 N
Power	
Model

Power	
Control

Power	
Model

Power	
Control

Power	
Management	

Policies

Fig. 1. Two-level power management architecture

1) Hardware: Every node in every cluster is instrumented
with a WattsUp? Pro digital power meter and reads its own
power measurements over USB. The power meters capture
power at 1 Hz and have an error of 1.5%.

2) Software: Each node runs Windows Server 2008 R2,
which has a convenient and standardized OS-level perfor-
mance counter interface. We use Windows Perfmon to record
measurements once per second for Windows ETW (Event
Tracing for Windows) software counters as well as the
WattsUp? Pro power meter readings.

IV. STAR-CAP: SOFTWARE-ONLY POWER CAPPING

Star-Cap is an extensible two-level power management
framework that separates the allocation of power budgets from
the specific power capping implementation. In this section, we
describe the Star-Cap framework and the control mechanisms
and algorithms used to enforce the power budget on individual
nodes.

A. Framework

The two-level architecture of Star-Cap is shown in Figure 1.
The top (cluster) level allocates the cluster’s power budget
among the individual nodes, providing each node with a power
cap target in Watts. At the top level, we experiment with two
policies for allocating the power budget. The first is a uniform
policy, in which the power budget is evenly distributed across
the nodes in the cluster. The second is a non-uniform policy,
which allows different nodes in the cluster to have different
power caps. This policy adjusts for load imbalances across
or within applications, granting higher power caps to busier
nodes.

The bottom (node) level of the Star-Cap framework is
responsible for enforcing the power cap target set by the
top-level controller. This organization decouples the power
management policy from the mechanism, providing flexibility
in the power capping implementation. The node-level power
capping software must monitor the node’s current power con-
sumption and adjust its power management knobs as needed
to stay within the power budget. In our implementation, we
adjust the available processor frequency states by using the
Windows Power Management functions, since the processors
are the main consumers of dynamic power in our system and
the easiest components to control in software. However, as
high-level power management knobs for other components
become available, we envision using our models to inform the
selection of knobs to adjust to reach the power management
target.

The remainder of this section describes the node-level power
capping policies we implemented. These policies are evaluated
in Section V.

B. Control mechanisms

All of the control algorithms we implemented use the same
method of adjusting the node-level power consumption, and
they all share three common inputs:

• A node-level power cap in Watts (Ptarget), set by the top-
level controller

• A measurement or estimate of the current power con-
sumption (Pcurrent)

• The set of processor frequency states that are currently
permitted ({f0, ..., fk}), as described below.

In all three of our node-level control algorithms, the power
capping software is responsible for adjusting the power con-
sumption by restricting or increasing the range of available
processor frequency states. If the processor supports a set of
frequency states {f0, ..., fn}, then the power capping software
will restrict the OS to frequency states f0 through fk, where
k ≤ n. In our implementations, we allow the OS’s existing
on-demand power management policy to choose the exact
frequency state from the subset of states allowed by the power
capping software. Our current implementation uses the same
set of permitted frequency states for all cores within a node.

C. Control algorithms

All of the control algorithms we implemented use two
configurable power consumption thresholds, Phi and Plo. We
configure Phi to be 95% of the power cap and Plo to be
90% of the power cap. Our algorithms make the following
adjustments:

• If Pcurrent > Phi, adjust the available frequency states from
{f0, ..., fk} to {f0, ..., fk−1}.

• If Pcurrent < Plo, adjust the available frequency states from
{f0, ..., fk} to {f0, ..., fk+1}.2

Thus, we adjust the number of allowed frequency states by
one step at a time over all cores in the cluster.

We implement two variations of this algorithm: (1) ReCap
(Reactive Power Capping), a window-based control technique
that reacts to Pcurrent, and (2) ProCap (Proactive Power Cap-
ping), which reacts to Pcurrent and one additional input. This
additional input, Pfuture, is the power consumption predicted
by the quadratic power model after the change in available
frequency states.

1) ReCap details: ReCap checks Pcurrent once per second to
determine whether or not to adjust the frequency state. After
adjusting the frequency states, it waits for a period of time for
the node power to settle; we empirically found that a window
of 10 seconds was necessary to fully observe the change of
frequency state’s effects on the node’s power consumption.

We experiment with three different versions of ReCap using
our three different methods of determining Pcurrent:

2The direction of this inequality has been corrected from > to < after the
publication of this paper.

M-ReCap: Pcurrent is the actual, measured node power con-
sumption.

L-ReCap: Pcurrent is the estimated power using a simple linear
model based only on CPU utilization.

C-Recap: Pcurrent is the estimated power using the cluster-
specific quadratic power model described in Sec-
tion III-A.

2) ProCap details: Like ReCap, ProCap checks Pcurrent

once per second. However, before adjusting the available
frequency states, it uses the quadratic power model to predict
Pfuture. This predicted power consumption is based on the
processor frequency state changing to fk−1 or fk+1 and all
other resource utilizations remaining constant. If the predicted
Pfuture is outside the range Plo ≤ Pfuture ≤ Phi, then ProCap will
not adjust the range of available frequency states. This simple
technique helps to prevent oscillations in power consumption
and removes the need to wait for the power consumption to
settle to its new value. Thus, ProCap does not use a history
window.

The next section evaluates these specific techniques. More
complicated prediction and control mechanisms are possible
and can be layered on top of our power models. However, the
simple techniques implemented here shed light on the potential
of model-based power capping schemes that do not rely on
physical measurement.

V. EVALUATION

We report results on the Intel Core 2 Duo cluster, since it
has a relatively large dynamic power range and similar per-
core power to low-power server platforms. Using QPMs for the
server cluster yielded similar results, and have been excluded
for brevity. The general nature of the QPMs makes our power
capping system generally applicable. We could extend power
capping to any platform with QPMs and in particular all the
platforms studied in [20].

Our dual-core processor has four frequency states: 1596
MHz (70% of peak), 1862 MHz (82%), 2128 MHz (94%),
and 2261 MHz (100%). Figure 2 shows the measured power
profiles of each node for the four workloads in this study
at each of the four frequency states. Altogether, the power
consumption ranges from 36 to 44 W per node, or 180 to
220 W for the cluster. Figure 2 also shows the node-to-
node power variation for these workloads. Overall, Star-Cap
has an overhead of approximately 1% CPU utilization on
this platform and lower overhead on more traditional server
processors.

A. Power capping profiles

The following figures illustrate our results (a) that accurate
models are required for fine-grained management of node or
cluster power, and (b) that proactive power capping using our
models is much better than reactive power capping, even when
reactive capping is based on direct power measurements. For
clarity, we graph the measured power of a single node, since
all the nodes have similar characteristics. The solid lines are
the result of using measured power for power capping and

the lines with markers are the measured power overlaid when
using ReCap and ProCap for power capping. The horizontal
dotted line on each graph represents the node-level power cap.

1) Low power cap results: Figure 3 shows the results
of capping power at a value of 38 W per node for the
four workloads. Figure 3 (top) shows reactive power capping
techniques based on the actual measured power (M-ReCap)
and predicted cluster power (C-ReCap). This comparison
shows that the QPM is accurate enough to replace direct
measurement, thereby lowering server cost. Figure 3 (bottom)
shows M-ReCap compared to the proactive power capping
algorithm (ProCap). ProCap has fewer power cap violations,
with violations of shorter duration.

Figure 3 (top) contains large overshoot peaks that coincide
with the duration of the history window. Furthermore, even
with a large history window compared to the sampling rate,
both reactive algorithms still experience some oscillations.
This is because, for some power cap values, there is no
frequency state that reliably leads to power consumption be-
tween the low and high thresholds, so the controller oscillates
between the two states. PageRank exhibits this behavior and
is the most violation-prone workload (right side of Figure 3).

For applications that exhibit clear phase behavior, the proac-
tive algorithm (ProCap) is superior to the reactive (C-ReCap)
algorithm. In this scenario, the current state of the system is a
very good proxy for the next state of the system at time t+1.
This scheme still experiences overshoot peaks, but they are
smaller both in magnitude and duration by factors of 2–10.
Furthermore, ProCap does not experience the same type of
oscillations at high CPU utilization that the reactive schemes
do. ProCap is able to lock on and hold a particular power state
instead of constantly reacting and correcting.

2) High power cap results: Figure 4 shows the behavior
when we increase the power cap threshold to 42W. It zooms in
to the WordCount and Prime workloads since they have shorter
runtimes, and their behavior is representative of the complete
set of workloads. Figure 4 (A) again shows oscillations when
using the M-ReCap algorithm. We omit C-Recap because it
once again shows almost identical behavior to M-Recap.

In Figure 4 (B), we show reactive power capping based
on a strawman: a simple linear model based on CPU uti-
lization alone (L-Recap). This model has the characteristic
overshoot of the other reactive algorithms. Moreover, on closer
examination, it is clear that L-ReCap forces the processor
into the lowest frequency possible, operating around 35W.
The reason is that, without CPU frequency information, L-
ReCap overpredicts power based on the high CPU utilization.
This demonstrates the bimodal power capping behavior of
low fidelity models. L-ReCap is unable to take advantage of
intermediate power management modes in these scenarios. For
example, setting the node power cap value above 42W for
the L-ReCap algorithm resulted in no power capping. This
is because the range of the linear model does not match
the dynamic range of the node, so the model is unable to
accurately predict the node power at high frequency and
utilization.

	

20

25

30

35

40

45

50

1 3601 7201 10801

Po
we

r	 (W
)

Time	 (Hrs)

Node-02
Node-03
Node-04
Node-05

20

25

45

50

40

30

35

1 2 3

No	 Frequency	 Cap
94%	 Frequency	 Cap

82%	 Frequency	 Cap

70%	 Frequency	 Cap

WordCount Sort PageRankPrime

{

Node-‐02
Node-‐03
Node-‐04
Node-‐05

Ser
ver

	 Po
we

r	 (W
)

Fig. 2. Workload power characteristics on each node at different frequency caps.

	

200

250

300

350

400

450

500

550

600

650

700

0

50

100

150

200

250

300

350

400

450

500

1 601 1201 1801 2401 3001 3601

Ser
ver

	 Po
we

r	 (W
)

Time	 (Minutes)

M-‐ReCap C-‐ReCap ProCap

25
30
35
40

40

25
30
35
40
45
50

100
0

20 30 50 60

WordCount Sort PageRankPrime

(A)

(B)

Fig. 3. 38W per-node power cap enforced using (A) reactive capping using measured power (M-ReCap) and cluster-specific power model (C-ReCap), and
(B) M-ReCap with proactive capping a using cluster-specific power model (ProCap).

	

20

25

30

35

40

45

50

1 101 201
Time	 (s)

Cluster	 model,	 prediction

20

25

30

35

40

45

50

1 101 201
Time	 (s)

Linear	 model,	 window

(B) (C)
20

25

30

35

40

45

50

1 101 201

Po
we

r	 (
W
)

Time	 (s)

Measured	 power,	 window

Power	 Cap

(A)WordCount Prime WordCount Prime WordCount Prime

M-‐ReCap

Power	 Cap	 Threshold
ProCapL-‐ReCap

25

30

35

40

45

50

20
0 0 0100 100 100200 200 200

Time(s) Time(s)Time(s)

Se
rve

r	 P
ow

er	
(W

)

Fig. 4. 42W per-node power cap enforced using (A) reactive capping using measured power (M-ReCap) and cluster-specific power model (C-ReCap), and
(B) M-ReCap with proactive capping a using cluster-specific power model (ProCap).

B. Power cap violations

The cluster power cap violations are generally at least 50%
lower than the per-node violations, demonstrating that the
node violations are not coincident for these workloads, even
though the tasks run on these nodes are coordinated. The
Prime, WordCount, and Sort workloads are well suited for
the ProCap mechanism using the QPM. We also compared
these algorithms to a static maximum processor frequency
limit, derived empirically. To avoid violating a 38 W or 40
W power cap, the maximum operating frequency must be
set to 1596 MHz (the lowest operating frequency), and at
42 W, the maximum operating frequency cannot exceed 1862
MHz. In general, the ProCap algorithm has the lowest vio-
lation percentage of the dynamic power capping mechanisms
for our workloads. Overall, the power capping mechanisms
provided viable alternatives to static frequency capping that
is easier to implement without any a priori knowledge of

the system. Furthermore, the ProCap mechanism combined
with non-uniform power capping, as described in the next
section, reduces application runtime compared to capping CPU
frequency of the node to guarantee a power cap.

There are scenarios where ProCap exhibits some power
cap violations. For applications with sporadic behavior, like
PageRank, the current state of the system is not a good
indicator of the future state, and as such, power predictions
will err. To compensate, we propose a Hybrid Proactive
Predictive Power Capping (ProCap+) algorithm, where we add
a violation window that decrements the maximum allowable
P-state when the number of violations occurring within the
window exceeds a configurable threshold.

C. Power capping and performance

Table II provides the normalized performance of various
scenarios compared to running the workloads without a power

TABLE II
NORMALIZED RUNTIMES OF THE WORKLOADS WITH: NO POWER CAP;

FIXED PROCESSOR FREQUENCY; A 190W CLUSTER POWER CAP,
UNIFORMLY DISTRIBUTED; AND A 190W CLUSTER POWER CAP,

NON-UNIFORMLY DISTRIBUTED.

PageRank Prime Sort WordCount
No power cap (220W) 1 1 1 1
MHz cap: 1596 1.34 1.43 1.22 1.25
190W cap (uniform) 1.20 1.42 1.24 1.27
190W cap (non-uniform) 1.08 1.00 1.08 1.04

cap (row 1). When running workloads at the slowest processor
frequency, we observe an increase in runtime by 34%, 43%,
22% and 25%, for PageRank, Primes, Sort, and WordCount,
respectively (row 2). These numbers are consistent with the
workload characteristics; CPU-bound applications like Prime
suffer more than I/O- and network-bound workloads.

The next two rows of Table II show different options for
distributing the cluster power cap on a workload with some
load imbalance. Row 3 shows the runtime when applying the
power cap uniformly across nodes, for a per-node target of
38W. This low cap forces the nodes to operate mostly in the
lowest P-state.

Row 4 shows the results of distributing the cluster power
budget non-uniformly across nodes. In this example, nodes
with more work to do are given a higher power cap than the
others, avoiding most of the runtime slowdown. In the case of
our cluster, we can decrease the power cap of the job scheduler
node and/or worker node(s) and increase another worker node
commensurately, maintaining the same cluster power cap of
190W. The non-uniform power capping regained between 14–
43% of overall performance when compared to the uniform
power capping scenarios, while maintaining a power budget
that is 14% lower than the NoCap power budget. This non-
uniform policy translates into lower power infrastructure costs
and/or the ability to host significantly more nodes [5].

VI. CONCLUSIONS

Our results show that power capping schemes can be
improved by using power models to anticipate the effect
of a possible frequency state change. Our proactive power
capping mechanism provided 2–10 times better response time
than reactive power capping mechanism that use direct power
measurement. Significant data center power spikes can occur at
the granularity of a minute [30], and Star-Cap mitigates these
spikes with a response time of 20 seconds or less for our
workloads. Furthermore, using non-uniform power capping,
we are able to improve cluster throughput by 14–43% by
borrowing power from other nodes and increasing the power
cap at the granularity of a single node. To the best of our
knowledge, this study is the first to apply high-level, full-node
and full-cluster power models to power capping. This allows
us to implement power capping with no additional hardware
support, dramatically reducing the server cost with minimal
overhead (1% of CPU utilization). Although not explicitly
evaluated in this work, we believe that by decoupling the
power capping policy from the power capping mechanism, our

system can also be used to manage heterogeneous clusters and
enable rapid deployment of new power capping mechanisms
at fine granularity.

REFERENCES

[1] L. A. Barroso, J. Clidaras, and U. Hölzle, The Datacenter as a
Computer: An introduction to the design of warehouse-scale machines,
2nd ed. Morgan and Claypool, 2013.

[2] Hewlett-Packard, “HP Insight Control quickspecs,” Online, June 2014.
[Online]. Available: http://www8.hp.com/h20195/v2/GetDocument.
aspx?docname=c04123391

[3] M. Broyles, C. Francois, A. Geissler, M. Hollinger, T. Rosedahl, G. J.
Silva, M. Vanderwiel, J. Van Heuklon, and B. Veale, “IBM EnergyScale
for POWER7 processor-based systems,” Online, 2013 March.

[4] J. Park, “Open Compute Project: Data center v. 1.0.”
[Online]. Available: http://www.opencompute.org/assets/Uploads/
DataCenter-Mechanical-Specifications.pdf

[5] X. Fan, W. Weber, and L. A. Barroso, “Power provisioning for a
warehouse-sized computer,” in Proc. 34th Int. Symp. Computer Archi-
tecture (ISCA), Jun. 2007.

[6] P. Ranganathan, P. Leech, D. Irwin, and J. Chase, “Ensemble-level power
management for dense blade servers,” in Proc. 33rd Int. Symp. Computer
Architecture (ISCA), Jun. 2006.

[7] M. E. Femal and V. W. Freeh, “Safe overprovisioning: Using power
limits to increase aggregate throughput,” in Proc. 4th Int. Workshop
Power-Aware Computer Systems (PACS), Dec. 2004.

[8] X. Fu, X. Wang, and C. Lefurgy, “How much power oversubscription
is safe and allowed in data centers?” in Proc. Int. Conf. Autonomic
Computing (ICAC), 2011.

[9] C. Lefurgy, X. Wang, and M. Ware, “Power capping: A prelude to power
shifting,” Cluster Computing, vol. 11, no. 2, pp. 183–195, 2008.

[10] T. Li and L. K. John, “Run-time modeling and estimation of operating
system power consumption,” in Proc. Int. Joint Conf. Measurement and
Modeling of Computer Systems (SIGMETRICS), Jun. 2003.

[11] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu,
“No “power struggles”: Coordinated multi-level power management for
the data center,” in Proc. 13th Int. Conf. Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2008.

[12] D. C. Snowdon, E. Le Sueur, S. M. Petters, and G. Heiser, “Koala: A
platform for OS-level power management,” in Proc. 4th ACM European
Conf. Computer Systems (EuroSys), 2009.

[13] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and N. Gau-
tam, “Managing server energy and operational costs in hosting centers,”
in Proc. Int. Joint Conf. Measurement and Modeling of Computer
Systems (SIGMETRICS), 2005.

[14] A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy, “Optimal power
allocation in server farms,” in Proc. Int. Joint Conf. Measurement and
Modeling of Computer Systems (SIGMETRICS), 2009, pp. 157–168.

[15] H. Lim, A. Kansal, and J. Liu, “Power budgeting for virtualized data
centers,” in Proc. USENIX Annual Technical Conf., 2011.

[16] J. Choi, S. Govindan, B. Urgaonkar, and A. Sivasubramaniam, “Pro-
filing, prediction, and capping of power consumption in consolidated
environments,” in Proc. IEEE Int. Symp. Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS),
2008.

[17] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. Bhattacharya, “Virtual
machine power metering and provisioning,” in Proc. ACM Symp. Cloud
Computing (SoCC), 2010.

[18] R. Cochran, C. Hankendi, A. K. Coskun, and S. Reda, “Pack & cap:
Adaptive DVFS and thread packing under power caps,” in Proceedings
of the 44th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), 2011.

[19] J. D. Davis, S. Rivoire, M. Goldszmidt, and E. K. Ardestani, “Ac-
counting for variability in large-scale cluster power models,” in Proc.
2nd Exascale Evaluation and Research Techniques Workshop (EXERT),
2011.

[20] ——, “CHAOS: Composable highly accurate OS-based power models,”
in Proc. 2012 IEEE Int. Symp. Workload Characterization (IISWC),
2012.

[21] S. Govindan, J. Choi, B. Urgaonkar, A. Sivasubramaniam, and A. Bal-
dini, “Statistical profiling-based techniques for effective power provi-
sioning in data centers,” in Proc. 4th ACM European Conf. Computer
Systems (EuroSys), 2009.

[22] X. Wang and M. Chen, “Cluster-level feedback power control for
performance optimization,” in Proc. 14th Int. Symp. High-Performance
Computer Architecture (HPCA), 2008.

[23] H. Hoffmann, S. Sidiroglu, M. Carbin, S. Misailovic, A. Agarwal, and
M. Rinard, “Dynamic knobs for responsive power-aware computing,” in
Proc. 16th Int. Conf. Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2011, pp. 199–212.

[24] Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini,
“MemScale: Active low-power modes for main memory,” in Proc.
16th Int. Conf. Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2011, pp. 225–238.

[25] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and H. Franke,
“DRPM: Dynamic speed control for power management in server class
disks,” in Proc. 30th Int. Symp. Computer Architecture (ISCA), 2003.

[26] D. Abts, M. Marty, P. Wells, P. Klausler, and H. Liu, “Energy pro-
portional datacenter networks,” in Proc. 37th Int. Symp. Computer
Architecture (ISCA), 2010.

[27] J. H. Friedman, “Multivariate adaptive regression splines,” Annals of
Statistics, vol. 19, no. 1, pp. 1–67, 1991.

[28] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
Distributed data-parallel programs from sequential building blocks,” in
Proc. 2nd ACM European Conf. Computer Systems (EuroSys), 2007.

[29] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K. Gunda, and
J. Currey, “DryadLINQ: A system for general-purpose distributed data-
parallel computing using a high-level language,” in Proc. 8th USENIX
Symp. Operating Systems Design and Implementation (OSDI), 2008.

[30] L. A. Barroso, “Warehouse-scale computing: Entering the teenage
decade,” 2011, plenary talk, Federated Computing Research Conference
(FCRC).

