CS 450 Exam 1 Mon. 2/29/2016

Name:

Rules and Hints

¢ You may use one handwritten 8.5 x 11” cheat sheet (front and back). This is the
only additional resource you may consult during this exam. No calculators.

e Include step-by-step explanations and comments in your answers, and show as
much of your work as possible, in order to maximize your partial credit.

Grade

Your Score | Max Score
Problem 1: Hardware support 16
Problem 2: Mode transfer 12
Problem 3: Syscalls 16
Problem 4: Child processes 16
Problem 5: Pipes 20
Problem 6: Processes and threads 20
Total 100

Problem 1: Hardware support (16 points)

The first three sub-questions refer to hardware-supported kernel vs. user modes.

Part A

Why are privileged ISA instructions necessary? Give an example or a scenario that
requires them.

Part B

Why is hardware support for memory management necessary? Give an example or
scenario that requires it.

Part C

y are interrupts necessary? Give an example or scenario that requires them.
Wh t t ?G | that th

Part D

State at least one attribute of an ISA or hardware that is helpful for virtualization, and
explain.

Problem 2: Mode transfer (12 points)

Give an example of each of the following types of mode transfer:

Part A

Externally triggered, user to kernel

Part B
Implicitly triggered by the program, user to kernel

Part C
Explicitly triggered by the program, user to kernel

Problem 3: Syscalls (16 points)

Part A: Programmer

When a programmer wants to make a system call in x86, what steps must his/her as-
sembly code take?

Part B: Hardware

What does the hardware need to do to execute a single machine-code syscall instruction?

Part C: Syscall handler

What does the syscall handler need to do (besides the actual open(), write(), or what-
ever)?

Part D: Hardware, part 2

What does the hardware need to do to execute a return-from-syscall instruction?

Problem 4: Child processes (16 points)

Show a possible output for the following program (assuming that all necessary headers
have been included). Answers may vary — you will get full credit if your answer is
internally consistent.

int main(void) {
pid_t x = fork();
pid_t y = fork(Q);

printf ("Process %d (parent %d) forked %d and %d\n",
getpid(), getppid(), x, y);

return O;

Problem 5: Pipes (20 points)

Part A: Code (12 points)

Add to the skeleton code on the next page so that the three child processes combine to
execute the following command: ps aux | grep root | more. Assume that all neces-
sary headers have been included. You do not need to worry about error handling, but
you should close all unused file descriptors.

Note: you will get partial credit for just running these 3 commands, so don’t leave this
blank!

Part B: Visualization (8 points)

Draw the final state of the two pipes and the three child processes’ file descriptor tables.

Intentionally left blank to make sure that the code and instructions for Problem 5 are
separated.

int main(void) { // Skeleton code for Problem 5
int pfdi[2], pfd2[2];
pipe(pfdl);
pipe (pfd2);

if (fork() == 0) {

}
if (fork() == 0) {

}
if (fork() == 0) {

while (wait(NULL) != -1) ;

b

10

Problem 6: Processes and threads (20 points)

Part A: True/False (12 points)

Circle “True” or “False” to answer each question. If you circle an answer and then
y

change your mind, write out your entire answer next to the row.

Note: If two processes (or threads) share an address space, then Address X refers to the

same actual memory location (and thus the same data) for each.

Parent and child processes share the same file descriptor table by default. | True False
Parent and child processes share the same global variable area in memory. | True False
Parent and child processes share the same stack. True False
Parent and child processes share the same heap. True False
Parent and child processes share the same code segment in memory. True False
Parent and child processes share the same address space. True False
Parent and child threads share the same file descriptor table by default. True False
Parent and child threads share the same global variable area in memory. True False
Parent and child threads share the same stack. True False
Parent and child threads share the same heap. True False
Parent and child threads share the same code segment in memory. True False
Parent and child threads share the same address space. True False

11

Part B: Communication (8 points)

Name a mechanism that allows a child process to communicate data to its parent.

Name a mechanism that allows a child thread to communicate data to its parent.

Is it possible for a parent process to exit while its child continues executing? What about
a parent thread?

12

