CS385Llab1
Revised Wed. 2/4/09 after lab.

In this lab, you’ll be coding sequential versions of two “embarrassingly parallel”
algorithms. Then you’ll partition them, in preparation for parallelizing them in the
future.

You'll turn in two C++ source files:
* yourlastnameL1-seq.cpp
* yourlastnameL1-par.cpp

Turn files in by copying them to ~srivoire/cs385/submit/. You can verify the
submission by visiting
http://rivoire.cs.sonoma.edu/cs385/lablsub.txt

Building L1-seq

Generating and verifying the data
Both algorithms will use integer arrays as their inputs. You need to provide the
infrastructure to randomly generate these arrays and to print them.

Include the following in your program:
* The preprocessor directive
#define N 10
(or any number you like). This is the array size.

e Afunction
void GenerateArray(int array[], int size)
The function needs to have exactly this name and these argument types,
because [may replace it with something else when testing your code.

This function will initialize the elements of array[] with random numbers.
(It's OK to constrain the range of these random numbers in some way if it
makes your life easier, but your code should all work for any array values.)

* A function
void PrintArray(int array[], int size)
This function needs to print the elements of your array in a format clear
enough to allow you to test your code. Again, please use this function name
and these argument types.

Test these functions by declaring an array in your main program, calling
GenerateArray to initialize it, and calling PrintArray to print it.

IncrementAll
Write a function to produce a new array. The elements of this new array will be
produced by adding 1 to the corresponding element of the old array, e.g.

new|[0] = old[0] + 1;

It doesn’t matter whether you return the output array from IncrementAll or
whether you pass it to IncrementAll as a parameter. The important things are:
1. The output array doesn’t overwrite the input array
2. The output array is accessible from main

Verify this function by printing the old and new arrays.

FindMaxElement
Write a function to find the value of the largest array element. Verify this function
as well.

Building L1-par
Copy your L1-seq file to a new file (L1-par). You don’t have to finish this file in lab.

In this part of the assignment, you will think about how to divide work among
multiple processor cores. You'll simulate this by calling each function multiple
times, once for each processor.

First, include a new #define statement:

#define P 8

This statement defines the number of processors. You should make no assumptions
about the value of P, other than that it’s less than N. 8 is a reasonable value to start
with.

NOTE: The value of N=10 that we used for testing is ridiculously small. You should
write your code with the assumption that N will usually be much larger than P (by a
factor of 100 or more). Your code should be correct as long as N is larger than P.
Your code should be efficient for the case where N is much larger than P.

IncrementAll
First, modify IncrementAll so that it will produce the correct output array if called in
the following loop (the loop is in main).

for (int i=0; i<P; i++) {
// Call IncAll - the interface is up to you

}

The idea is to envision each iteration of the loop being farmed out to a different
processor, so that one processor handles the i=0 case, another processor handles
i=1, and so on.

Each call to IncAll should thus result in N/P elements getting incremented (and
don’t forget to deal with the case where N is not a multiple of P). At the end of the
for-loop, the resulting array should be exactly the same as the one from the
sequential version.

FindMaxElement

You should use a similar method to parallelize FindMaxElement to the extent
possible. Part of the task will not be fully parallelizable; it’s OK to do that part
sequentially inside main.

