
CS 351 Exam 2 Mon. 11/13/2017

Name:

Rules and Hints

• You may use one handwritten 8.5 × 11” cheat sheet (front and back). This is the
only additional resource you may consult during this exam. No calculators.

• When applicable, you may write your answers in the form [mathematical expres-
sion][units]. There is no need to actually do the arithmetic.

• You may detach the LEGv8 cheat sheet and processor diagram. No need to submit
them with your exam.

Grade

Your Score Max Score

Problem 1: Datapath tracing 37

Problem 2: Pipelining 23

Problem 3: Data hazards and forwarding 20

Problem 4: Control hazards and branch prediction 20

Total 100

Problem 1: Datapath tracing (37 points)

Provide the exact numeric answer (in decimal, hex, or binary) to each question if possi-
ble. If not, describe the value without stating an exact number.

Consider the execution of this instruction: LDUR X2, [X19, #64]

Assume the following:
• The bits of this instruction are stored in addresses 8000-8003 in memory.
• X19 contains the value 20000, which is the base address of a 100-element array of

long long, where
a[i] = 2 ∗ i

.
• Registers X0-X10 initially contain the value 5. Registers X11-X18 contain the value

6. Registers X20-X30 contain the value 7.

Part A: Instruction memory (4 points)

What value goes into the instruction memory’s Read address port? How many bits is that
value?

What is the value of the instruction memory’s Instruction[31–0] output? Give this one in
binary.

Part B: Register file (5 points)

What values go into the register file’s Read register 1 and Read register 2 ports? How many
bits are those values?

2

What values go into the register file’s Write register and Write data ports? How many bits
are those values?

What is the value of the RegWrite control signal?

Part C: ALU (6 points)

What are the values of the ALU’s two data inputs? How many bits are those values?

What are the values of the ALU’s ALU result and Zero outputs? How many bits are those
values?

Part D: Branch target adder (3 points)

What two values are input to the top right adder? How many bits are those values?

What is the output of the top right mux?

3

Part E: Data memory (9 points)

What two values are input to the data memory’s Address and Write Data ports? How
many bits are those values?

What is the output of the data memory? How many bits is it?

Part F: Modifying the diagram (10 points)

Consider a fake ”load + increment” instruction that works like this:
LDINC Rt, [Rn, #DTAddr]

It works just like a regular load, with one addition: the stored value in Rn is incremented
by 8 at the end of the instruction.

On the next page, clearly draw/explain any hardware you would need to add to the
processor diagram to support this instruction. You can draw the new hardware in isola-
tion, but clearly indicate where its inputs and outputs go.

I will assume that all the control signals should be set the same as LDUR; you should
explain any differences or new signals.

4

Problem 1F continued

5

Problem 2: Pipelining (23 points)

Consider a non-pipelined processor with a cycle time of 1.5 ns (1500 ps).

Part A: Cycle time (6 points)

What is the lower bound on the cycle time for a 5-stage pipelined version of this proces-
sor? What would have to be true to get this cycle time?

Part B: Instruction latency (6 points)

What is the latency of a single instruction on both the ideal pipelined and non-pipelined
versions of this processor?

6

Part C: Throughput (6 points)

What is the best-case CPI of a long sequence of instructions on both the ideal pipelined
and non-pipelined versions? Which is faster?

Part D: Optimizations (5 points)

Explain how shaving 50 seconds off the data memory access time would change the
pipelined and non-pipelined versions.

7

Problem 3: Data hazards and forwarding (20 points)

Attempt one of the following problems. Provide diagrams to justify your answers.

• For full credit; Give a sequence of LEGv8 instructions that takes 8 cycles with for-
warding and 11 cycles without forwarding (i.e. with stalling).

• For up to 15 points: Give a sequence of LEGv8 instructions that has 4 cycles of
stalls without forwarding. How long would it take with forwarding?

• For up to 10 points: Give a sequence of LEGv8 instructions that has 2 data de-
pendencies between consecutive instructions, and explain how long it would take
with and without forwarding.

8

Problem 4: Control hazards and branch prediction (20 points)

Part A: Architectural implications (5 points)

What if you didn’t have the ability to squash mispredicted branches / mis-fetched in-
structions, but still had to design a correctly functioning processor? Briefly explain how
this would affect the pipeline design and/or the performance.

Part B: Prediction accuracy (15 points)

Code for this problem:

L: ADD X2, XZR, #10

CBZ XZR, L

If branches are resolved when the branch reaches the EX stage, and the correct instruc-
tion is fetched in the following cycle, how many cycles will one iteration of this loop
take in the steady state with...

• Predict-not-taken?

• A 1-bit predictor?

• A 2-bit predictor?

Partial credit for just giving the long-term accuracy of each predictor.

9

(intentionally blank)

10

LEGv8 Arithmetic Instructions
Instruction Operation Fmt Opcode
ADD Rd, Rn, Rm reg[Rd] = reg[Rn] + reg[Rm] R 0x458
SUB Rd, Rn, Rm reg[Rd] = reg[Rn] - reg[Rm] R 0x658
ADDI Rd, Rn, imm reg[Rd] = reg[Rn] + imm I 0x488-0x489
SUBI Rd, Rn, imm reg[Rd] = reg[Rn] - imm I 0x688-0x689
ADDS Rd, Rn, Rm reg[Rd] = reg[Rn] + reg[Rm] R 0x558
SUBS Rd, Rn, Rm reg[Rd] = reg[Rn] - reg[Rm] R 0x758
ADDIS Rd, Rn, imm reg[Rd] = reg[Rn] + imm I 0x790-0x791
SUBIS Rd, Rn, imm reg[Rd] = reg[Rn] - imm I 0x788-0x789
The versions ending in S also set the Negative, Zero, Overflow, and Carry bits of
the FLAGS register.
LEGv8 Logical Instructions
Instruction Operation Fmt Opcode
AND Rd, Rn, Rm reg[Rd] = reg[Rn] & reg[Rm] R 0x450
ORR Rd, Rn, Rm reg[Rd] = reg[Rn] | reg[Rm] R 0x550
EOR Rd, Rn, Rm reg[Rd] = reg[Rn] ^ reg[Rm] R 0x650
ANDI Rd, Rn, imm reg[Rd] = reg[Rn] & imm I 0x490-0x491
ORRI Rd, Rn, imm reg[Rd] = reg[Rn] | imm I 0x590-0x591
EORI Rd, Rn, imm reg[Rd] = reg[Rn] ^ imm I 0x690-0x691
LSL Rd, Rn, shamt reg[Rd] = reg[Rn] << shamt R 0x69B
LSR Rd, Rn, shamt reg[Rd] = reg[Rn] >> shamt R 0x69A
LSL and LSR replace the shifted-out bits with 0s.
LEGv8 Branch Instructions
Instruction Operation Fmt Opcode
CBZ Rt, CondBrAddr If (reg[Rt] == 0) PC = BrPC CB 0x5A0-0x5A7
CBNZ Rt, CondBrAddr If (reg[Rt] != 0) PC = BrPC CB 0x5A8-0x5AF
B.cond CondBrAddr If (FLAGS = cond) PC = BrPC CB 0x2A0-0x2A7
B BrAddr PC = BrPC B 0x0A0-0x0BF
BR Rd PC = reg[Rd] R 0x6B0
BL BrAddr reg[X30] = PC + 4; PC = BrPC B 0x4A0-0X4BF
BrPC = PC + SignExt ([Cond]BrAddr << 2)
Flags: Negative (N), Zero (Z), Overflow (V), Carry (C)
Category B.cond Condition (if

SUBS or SUBIS)
B.cond Condition

Equality B.EQ Z = 1 B.NE Z = 0
Signed < and <= B.LT N != V (signed) B.LE ~(Z = 0 & N = V)
Signed > and >= B.GT Z = 0 & N = V B.GE N = V
Unsigned < and <= B.LO C = 0 B.LS ~(Z = 0 & C = 1)
Unsigned > and >= B.HI Z = 0 & C = 1 B.HS C = 1

LEGv8 Data Transfer Instructions
Instruction Operation Fmt Opcode
LDUR Rt, [Rn, DTAddr] reg[Rt] =

Mem[Rn + SignExt(DTAddr)]
D 0x7C2

STUR Rt, [Rn, DTAddr] Mem[Rn + SignExt(DTAddr)] =
reg[Rt]

D 0x7C0

LDURB Rt, [Rn, DTAddr] Loads 8b (1B) from memory into
least significant bits of register

D 0x1C2

STURB Rt, [Rn, DTAddr] Stores 8b (1B) to memory D 0x1C0

Instruction Formats
R-format:
11b: opcode 5b: Rm 6b: shamt 5b: Rn 5b: Rd
I-format:
10b: opcode 12b: immediate 5b: Rn 5b: Rd
D-format:
11b: opcode 9b: data trans. addr 00 5b: Rn 5b: Rt
B-format:
6b: opcode 26b: branch address
CB-format:
8b: opcode 19b: conditional branch address 5b: Rt

Register List
Name Use Preserve for caller?
X0-X7 Function arguments / results N
X8 Indirect result location N
X9-X18 Temporary values N
X19-X27 Saved values Y
X28 (SP) Stack pointer Y
X29 (FP) Frame pointer Y
X30 (LR) Return address Y
XZR (31) Constant value 0 n/a (const.)

