
CS 351 Exam 2 Mon. 4/4/2016

Name:

Rules and Hints

• You may use one handwritten 8.5 × 11” cheat sheet (front and back). This is the
only additional resource you may consult during this exam. No calculators.

• You may write your answers in the form [mathematical expression][units]. There is
no need to actually do the arithmetic.

• You may use extra scratch paper if you need more space, but make it clear where
to find your answer to each question.

Grade

Your Score Max Score

Problem 1: Tracing the MIPS datapath 35

Problem 2: Pipeline performance 25

Problem 3: Data hazards and forwarding 20

Problem 4: Control hazards and branch prediction 20

Total 100

Problem 1: Tracing the MIPS datapath (35 points)

Answer the following questions about the single-cycle datapath provided at the end of
this exam. This is the datapath that executes a single instruction, from start to finish, on
every clock cycle. Be sure to explain your answers if you want to receive partial credit.

Provide the exact numeric answer (in decimal, hex, or binary) to each question if possi-
ble. If not, describe the value without stating an exact number.

Consider the execution of this instruction: LW $v0, 0($t0)

Assume the following:
• The bits of this instruction are stored in addresses 1000–1003 in memory.
• The initial value in $t0 is 1000.
• The initial value in $v0 is 12.
• The main control unit will set ALUOp to 00 for “add”, 01 for “subtract”, and 10 for

“look at the function field.”

Part A (1 point)

+1 extra credit point if entire class gets it right.

But before we begin: how many bits are in a byte?

Part B: Instruction memory (4 points)

What value goes into the instruction memory’s Read Address port? How many bits is
that value?

What is the value of the instruction memory’s Instruction[31:0] output?

2

Part C: Register file (7 points)

What values go into the register file’s Read Register 1 and Read Register 2 ports? How
many bits are those values?

What values go into the register file’s Write Register and Write Data ports? How many
bits are those values?

What is the value of the RegWrite control signal?

Part D: ALU (8 points)

What are the values of the ALU’s two data inputs? How many bits are those values?

What two values go into the ALU control unit? How many bits are those values?

What are the values of the ALU’s ALU result and Zero outputs? How many bits are those
values?

3

Part E: Branch target adder (5 points)

What two values are input to the top right adder? How many bits are those values?

What is the output of the top right adder?

What is the output of the top right mux? Conceptually, what is this mux choosing be-
tween?

4

Part F: Modifying the datapath (10 points)

How would you need to modify this datapath to support the SLL instruction? Assume
that the main ALU is capable of doing a shift operation. Draw any new hardware you
would need, and explain where it should go:

How would you set the following control signals to support SLL?

• RegWrite

• MemRead

• MemWrite

• RegDst

• ALUSrc

• ALUOp

• MemtoReg

• Branch

5

Problem 2: Pipeline performance (25 points)

Part A: CPI (5 points)

Given a large number of instructions, what is the best-case CPI of a non-pipelined im-
plementation, such as the one provided at the end of this exam?

What about a pipelined implementation?

Part B: Performance (20 points)

Assume that you have a MIPS processor whose stages are shown in the table:

IF 300 ps

ID 310 ps

EX 290 ps

MEM 300 ps

WB 180 ps

How long (in cycles) will a non-pipelined processor take to execute a million instructions
on this datapath?

What about a pipelined implementation?

6

How long (in seconds) will a non-pipelined processor take to execute a million instruc-
tions on this datapath?

What about a pipelined implementation?

What is the approximate speedup of the faster one over the slower one?

7

Problem 3: Data hazards and forwarding (20 points)

Consider the MIPS code:

ADD $t0, $t0, 1

LW $t1, 0($t0)

OR $t2, $t1, $t3

Part A: Dependencies (4 points)

List the read-after-write dependencies in this code. For each one, state the two instruc-
tions and the register that are involved.

Part B: Stalls (8 points)

Draw a pipeline diagram to show the execution of this code, assuming that dependent
instructions are stalled until they can read values from the register file.

8

Part C: Forwarding (8 points)

Draw a pipeline diagram to show the execution of this code, assuming that values are
forwarded whenever possible. Whenever a value is forwarded, state which forwarding
path is used (e.g. EX-EX).

9

Problem 4: Control hazards and branch prediction (20 points)

Part A: Pipeline (4 points)

In what pipeline stage does branch prediction happen? What information does the pre-
dictor have about the current instruction at that time?

Part B: Prediction accuracy (4 points)

Consider a branch that repeats the following pattern: NT, NT, NT, T, T, NT, T

What is the accuracy of predict-not-taken for this branch?

What is the long-term accuracy of a 1-bit predictor?

What is the long-term accuracy of a 2-bit predictor? Does it depend on the initial state?

10

Consider the following predictor, whose state table is given below. You may want to use
this information to draw a state diagram.

Current State Output Next State if T Next State if NT

A NT B A

B T C A

C T C B

What is the long-term accuracy of this predictor for this branch pattern, assuming that
it is initialized to State A if the branch has never been encountered before?

11

[intentionally left blank]

12

MIPS Arithmetic Instructions
Instruction Operation Fmt Opcode Funct
ADD $rd, $rs, $rt reg[rd] = reg[rs] + reg[rt] R 0 0x20
ADDI $rt, $rs, imm reg[rt] = reg[rs] + SignExt(imm) I 0x08
ADDU $rd, $rs, $rt reg[rd] = reg[rs] + reg[rt] R 0 0x21
ADDIU $rt, $rs, imm reg[rt] = reg[rs] + SignExt(imm) I 0x09
SUB $rd, $rs, $rt reg[rd] = reg[rs] - reg[rt] R 0 0x22
SUBU $rd, $rs, $rt reg[rd] = reg[rs] - reg[rt] R 0 0x23
LUI $rt, imm reg[rt] = (imm << 16) | 0 I 0x0f
The signed instructions (ADD, ADDI, SUB) can cause overflow exceptions.
MIPS Logical Instructions
Instruction Operation Fmt Opcode Funct
AND $rd, $rs, $rt reg[rd] = reg[rs] & reg[rt] R 0 0x24
ANDI $rt, $rs, imm reg[rt] = reg[rs] & ZeroExt(imm) I 0x0c
NOR $rd, $rs, $rt reg[rd] = ~(reg[rs] | reg[rt]) R 0 0x27
OR $rd, $rs, $rt reg[rd] = reg[rs] | reg[rt] R 0 0x25
ORI $rt, $rs, imm reg[rt] = reg[rs] | ZeroExt(imm) I 0x0d
SLL $rd, $rt, shamt reg[rd] = reg[rt] << shamt R 0 0x00
SRL $rd, $rt, shamt reg[rd] = reg[rt] >> shamt R 0 0x02
The SLL and SRL instructions fill in the “shifted-out” bits with 0.
MIPS Branch and Jump Instructions
Instruction Operation Fmt Opcode Funct
BEQ $rs, $rt, label if (reg[rs] == reg[rt]) PC=BrAddr I 0x04
BNE $rs, $rt, label if (reg[rs] != reg[rt]) PC=BrAddr I 0x05
J label PC = JumpAddr J 0x02
JAL label $ra = PC+4; PC = JumpAddr J 0x03
JR $rs PC = reg[$rs] R 0 0x08
BrAddr = PC + 4 + SignExt (imm << 2)
JumpAddr = (PC+4)[31:28] | (26-bit imm << 2)
MIPS Memory Access Instructions
Instruction Operation Fmt Opcode Funct
LW $rt, imm($rs) reg[rt] = Mem[rs + SignExt(imm)] I 0x23
SW $rt, imm($rs) Mem[rs + SignExt(imm)] = reg[rt] I 0x2b
LH $rt, imm($rs) Loads 16b from memory I 0x21
LHU $rt, imm($rs) Loads 16b from memory I 0x25
SH $rt, imm($rs) Stores 16b to memory I 0x29
LB $rt, imm($rs) Loads 8b from memory I 0x20
LBU $rt, imm($rs) Loads 8b from memory I 0x24
SB $rt, imm($rs) Stores 8b to memory I 0x28
LH and LB sign-extend the values read from memory in order to fill the leftmost
bits of the 32-bit register. LHU/LBU zero-extend.

MIPS Comparison Instructions
Instruction Operation Fmt Opcode Funct
SLT $rd, $rs, $rt reg[rd] = ($rs < $rt) R 0 0x2a
SLTI $rt, $rs, imm reg[rt] = ($rs < SignExt(imm)) I 0x0a
SLTU $rd, $rs, $rt reg[rd] = ($rs < $rt) R 0 0x2b
SLTIU $rt, $rs, imm reg[rt] = ($rs < SignExt(imm)) I 0x0b

Instruction Formats

R"format)
6b: opcode 5b: rs 5b: rt 5b: rd 5b: shamt 6b: funct

I"format)
6b: opcode 5b: rs 5b: rt 16b: immediate operand

J"format)
6b: opcode 26b: JumpAddr[28:2]

Register List
Name Number Use Preserved across

function call?
$zero 0 Constant value 0 Y
$at 1 Assembler temporary N
$v0-$v1 2-3 Function return values N
$a0-$a3 4-7 Function arguments N
$t0-$t7 8-15 Temporary values N
$s0-$s7 16-23 Saved values Y
$t8-$t9 24-25 More temporary values N
$k0-$k1 26-27 Reserved for OS kernel N
$gp 28 Global (heap) pointer Y
$sp 29 Stack pointer Y
$fp 30 Frame pointer Y
$ra 31 Return address Y

Chapter 4 — The Processor — 18

FIGURE 4.17 The simple datapath with the control unit. The input to the control unit is the 6-bit opcode field from the
instruction. The outputs of the control unit consist of three 1-bit signals that are used to control multiplexors (RegDst,
ALUSrc, and MemtoReg), three signals for con trolling reads and writes in the register file and data memory (RegWrite,
MemRead, and MemWrite), a 1-bit signal used in determining whether to possibly branch (Branch), and a 2-bit control
signal for the ALU (ALUOp). An AND gate is used to combine the branch control signal and the Zero output from the ALU;
the AND gate output controls the selection of the next PC. Notice that PCSrc is now a derived signal, rather than one
coming directly from the control unit. Thus, we drop the signal name in subsequent figures. Copyright © 2009 Elsevier,
Inc. All rights reserved.

