Name: ________________________________

Rules and Hints

- You may use one handwritten 8.5 × 11” cheat sheet (front and back). This is the only additional resource you may consult during this exam. No calculators.

- You may write your answers in the form \([\text{mathematical expression}] [\text{units}]\). There is no need to actually do the arithmetic.

- Write your answers on scratch paper. Clearly label your answer to each question.

Grade

<table>
<thead>
<tr>
<th>Problem</th>
<th>Your Score</th>
<th>Max Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem 1: Cache tracing</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Problem 2: Cache and page table sizing</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Problem 3: Address translation</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Problem 4: I/O</td>
<td></td>
<td>34</td>
</tr>
<tr>
<td>Problem 5: Cache coherence</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>
Problem 1: Cache tracing (24 points)

A hilariously tiny memory system has 12-bit addresses. Consider the following sequence of memory references:

1. 1011 0101 1100
2. 1111 0101 1100
3. 1011 0101 1110
4. 1011 0111 1100
5. 1011 1101 1100
6. 1111 1111 1100

Part A (12 points)

If the L1 cache has 32B of data and is direct-mapped with 4-byte blocks, give the hit rate of this sequence and show the final state of the cache.
Part B (12 points)

If the L1 cache has 32B of data and is 2-way set-associative with 2-byte blocks and LRU replacement, give the hit rate of this sequence and show the final state of the cache.
Problem 2: Cache and page table sizing (20 points)

Part A: Cache sizing (10 points)

A 2-way set-associative, write-through cache has 32 KB of data in 32B blocks. How much metadata, in total, does this cache need? Assume 32-bit memory addresses.

Part B: Page table sizing (10 points)

A system has 32-bit virtual addresses and 38-bit physical addresses, with 8KB pages. Assuming a single reference bit and three permission bits per page, how much total space will each process need for a flat page table?
Problem 3: Address translation (12 points)

A hilariously tiny system has 8-bit virtual addresses and 10-bit physical addresses. The page size is 32B.

If each virtual page \(P \) for Process A is mapped to physical page \(3P \), draw Process A’s page table and translate virtual address 10011001 to its corresponding physical address.
Problem 4: I/O (34 points)

The disks used in this problem are 1 TB disks with an average seek time of 4 ms, a rotation speed of 7200 rpm, and a transfer speed of 100 MB/s.

Part A: Disk performance (10 points)

How long does a small access (say, 512B) take on one of these disks? You can abbreviate this number as S from this point forward.

How long does a 12 MB access take on one of these disks? You can abbreviate this number as B from this point forward.
Parts B–D

(24 points) You have exactly 12 of these disks and cannot buy more. Fill out the table below to indicate for each RAID level:

- Part B (6 points): How much non-redundant data (in TB) can you fit in a 12-disk array?
- Part C (9 points): How many small *writes* can you do at one time across the 12-disk array?
- Part D (9 points): In terms of your answers to Part A, how long does a single 12MB write take?

Assume 0.25 MB (256 KB) chunk sizes for RAID 5.

<table>
<thead>
<tr>
<th></th>
<th>RAID 0</th>
<th>RAID 1</th>
<th>RAID 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Data in TB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. # small writes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. Large write time</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Problem 5: Cache coherence (10 points)

Consider a simpler write-back, write-invalidate coherence protocol that only has 2 states: Invalid or Valid. For your reference, the 3-state MSI diagram is below.

Part A: State diagram (7 points)

On the next page, draw a state diagram for your protocol. In each stage, you need to deal with the following possible inputs:

- PRH: Processor read hit
- PRM: Processor read miss
- PWH: Processor write hit
- PWM: Processor write miss
- BRM: Bus read miss (that is, “overheard” read miss from another processor)
- BWM: Bus write miss

For each possible input, show the state transition as well as any of the following actions:

- RM2b: put read miss on bus
- WM2b: put write miss on bus
- WB: write back data if dirty (assume you have a dirty bit).

Part B: 3 points

Below your diagram, state a the disadvantage of this protocol compared to MSI. Be specific: what kind(s) of access patterns will perform worse?
[Diagram for Problem 5]