
CS 351 Exam 2, Section 2 Wed. 11/2/2016

Name:

Rules and Hints

• You may use one handwritten 8.5 × 11” cheat sheet (front and back). This is the
only additional resource you may consult during this exam. No calculators.

• You may write your answers in the form [mathematical expression][units]. There is
no need to actually do the arithmetic.

Grade

Your Score Max Score

Problem 1: Datapath tracing 30

Problem 2: Pipelining 20

Problem 3: Data hazards and forwarding 15

Problem 4: Control hazards and branch prediction 19

Problem 5: Caches 16

Total 100

Problem 1: Datapath tracing (30 points)

Part A (1 point)

+1 extra credit point if entire class gets it right. Offer valid for Section 1 only.
Before we begin: how many bits are in a byte?

Provide the exact numeric answer (in decimal, hex, or binary) to each question if possi-
ble. If not, describe the value without stating an exact number.

Consider the execution of this instruction: LDUR X3, [X9, #40]

Assume the following:
• The bits of this instruction are stored in addresses 1200–1203 in memory.
• The initial value in X3 is 1500.
• The initial value in X9 is 600.

Part B: Instruction memory (4 points)

What value goes into the instruction memory’s Read address port? How many bits is that
value?

What is the value of the instruction memory’s Instruction[31–0] output?

Part C: Register file (7 points)

What values go into the register file’s Read register 1 and Read register 2 ports? How many
bits are those values?

2

What values go into the register file’s Write register and Write data ports? How many bits
are those values?

What is the value of the RegWrite control signal?

Part D: ALU (6 points)

What are the values of the ALU’s two data inputs? How many bits are those values?

What are the values of the ALU’s ALU result and Zero outputs? How many bits are those
values?

Part E: Branch target adder (5 points)

What two values are input to the top right adder? How many bits are those values?

What is the output of the top right adder?

3

What is the output of the top right mux? Conceptually, what is this mux choosing be-
tween?

Part F: Modifying the diagram (7 points)

How would you need to modify this diagram to support BL?

How would you set the following control signals to support BL?

• RegWrite

• MemRead

• MemWrite

• Reg2Loc

• ALUSrc

• ALUOp (just specify the operation in English)

• MemtoReg

• Branch

4

Problem 2: Pipelining (20 points)

Part A: Cycle time (5 points)

If you took a non-pipelined processor and pipelined it, would you expect the clock fre-
quency to increase, decrease, or stay exactly the same? Explain briefly.

Part B: Instruction latency (5 points)

If you took a non-pipelined processor and pipelined it, would you expect the time (mea-
sured in seconds) to execute a million instructions to increase, decrease, or stay exactly
the same? Explain briefly.

Part C: Throughput (5 points)

If you took a non-pipelined processor and pipelined it, would you expect the number
of cycles taken by a million instructions to increase, decrease, or stay exactly the same?
Explain briefly.

Part D: Splitting stages (5 points)

If pipelining is such a good idea, why not do more of it and split the longest of the 5
stages into 2 pieces? Give at least one possible problem with this idea.

5

Problem 3: Data hazards and forwarding (15 points)

Answer the following questions about the sequence of instructions:

ANDI X10, X10, X9

LDUR X10, [X9, 0]

ADD X10, X10, X10

Assuming all possible forwarding paths, how many cycles will this sequence take to
execute? You may want to draw a pipeline diagram.

List all forwarding paths used. Each item in your list should contain the cycle number,
the stage sending the data, and the stage receiving the data.

6

Problem 4: Control hazards and branch prediction (19 points)

Consider a branch with the following endlessly repeating pattern:
NT, T, T, NT, NT, T

Part A: Predict-not-taken (2 points)

What is the long-term accuracy of predict-not-taken for this branch?

Part B: 1-bit predictor (4 points)

What is the long-term accuracy of the 1-bit predictor for this branch?

Part C: 2-bit predictor (4 points)

What is the long-term accuracy of the 2-bit predictor for this branch? You can choose
any starting state; just specify the one you picked.

7

Part D: 3-bit predictor (4 points)

What is the long-term accuracy of a 3-bit predictor that chooses T or NT based on which
most common among the last 3 branch outcomes? You can choose any starting state;
just specify the one you picked.

Part E: General (5 points)

In which stage does branch prediction happen? Does the complexity of the branch pre-
dictor affect the cycle time? If it depends, explain how.

8

Problem 5: Caches (16 points)

Consider a system with an L1 cache whose access time is 1 cycle and whose hit rate is
85%, and a main memory whose access time is 250 cycles.

Part A: AMAT (7 points)

What is the average memory access time for this configuration?

Part B: L2 (5 points)

If you could add an L2 cache with a 10-cycle access time and a 50% hit rate, would it
be worth it? You don’t actually need to work out the arithmetic; just show the relevant
expression(s) and explain how you would decide.

Part C: Access patterns (4 points)

You write a program that sequentially traverses an extremely large array. The next day,
you rewrite it to traverse first the elements with even indices (a[0], a[2], etc.) and then
the elements with odd indices. Which of these would you expect to have a higher hit
rate in a standard cache? Explain.

9

©
 2016 Elsevier, Inc. All rights reserved.

20

M
odifications:

1. There should be no ALU
 control

unit; the m
ain control unit should

send a 4-bit ALU
O

p signal directly
to the ALU

.

2. Instruction [31:0] doesn't get
sign-extended. Instead,
Instruction [20:12] (D

TAddr) and
Instruction[23:5] (C

ondBrAddr) get
separately sign-extended. D

TAddr
goes to the ALU

Src m
ux, and

C
ondBrAddr goes to the shift left.

LEGv8 Arithmetic Instructions
Instruction Operation Fmt Opcode
ADD Rd, Rn, Rm reg[Rd] = reg[Rn] + reg[Rm] R 0x458
SUB Rd, Rn, Rm reg[Rd] = reg[Rn] - reg[Rm] R 0x658
ADDI Rd, Rn, imm reg[Rd] = reg[Rn] + imm I 0x488-0x489
SUBI Rd, Rn, imm reg[Rd] = reg[Rn] - imm I 0x688-0x689
ADDS Rd, Rn, Rm reg[Rd] = reg[Rn] + reg[Rm] R 0x558
SUBS Rd, Rn, Rm reg[Rd] = reg[Rn] - reg[Rm] R 0x758
ADDIS Rd, Rn, imm reg[Rd] = reg[Rn] + imm I 0x790-0x791
SUBIS Rd, Rn, imm reg[Rd] = reg[Rn] - imm I 0x788-0x789
The versions ending in S also set the Negative, Zero, Overflow, and Carry bits of
the FLAGS register.
LEGv8 Logical Instructions
Instruction Operation Fmt Opcode
AND Rd, Rn, Rm reg[Rd] = reg[Rn] & reg[Rm] R 0x450
ORR Rd, Rn, Rm reg[Rd] = reg[Rn] | reg[Rm] R 0x550
EOR Rd, Rn, Rm reg[Rd] = reg[Rn] ^ reg[Rm] R 0x650
ANDI Rd, Rn, imm reg[Rd] = reg[Rn] & imm I 0x490-0x491
ORRI Rd, Rn, imm reg[Rd] = reg[Rn] | imm I 0x590-0x591
EORI Rd, Rn, imm reg[Rd] = reg[Rn] ^ imm I 0x690-0x691
LSL Rd, Rn, shamt reg[Rd] = reg[Rn] << shamt R 0x69B
LSR Rd, Rn, shamt reg[Rd] = reg[Rn] >> shamt R 0x69A
LSL and LSR replace the shifted-out bits with 0s.
LEGv8 Data Transfer Instructions
Instruction Operation Fmt Opcode
LDUR Rt, [Rn, DTAddr] reg[Rt] = Mem[Rn + DTAddr] D 0x7C2
STUR Rt, [Rn, DTAddr] Mem[Rn + DTAddr] = reg[Rt] D 0x7C0
LDURB Rt, [Rn, DTAddr] Loads 8b from memory into

least significant bits of
register

D 0x1C2

STURB Rt, [Rn, DTAddr] Stores 8b to memory D 0x1C0
MOVZ Rd, MovImm, LSL Op Rd[specific bits] = MovImm;

Rd[all other bits] = 0
IM 0x694-

0x697

MOVK Rd, MovImm, LSL Op

Rd[specific bits] = MovImm;
Rd[all other bits] keep values

IM 0x794-
0x797

Op is 0 to load MovImm in the rightmost 16 bits of the register, 16 (or 1 in
machine code) to load it in bits 31-16, 32 (or 2) for the next 16 bits, and 48 (or 3)
for the most significant bits.

LEGv8 Branch Instructions
Instruction Operation Fmt Opcode
CBZ Rt, CondBrAddr If (reg[Rt] == 0) PC = BrPC CB 0x5A0-0x5A7
CBNZ Rt, CondBrAddr If (reg[Rt] != 0) PC = BrPC CB 0x5A8-0x5AF
B.cond CondBrAddr If (FLAGS = cond) PC = BrPC CB 0x2A0-0x2A7
B BrAddr PC = BrPC B 0x0A0-0x0BF
BR Rt PC = reg[Rt] R 0x6B0
BL BrAddr reg[X30] = PC + 4; PC = BrPC B 0x4A0-0X4BF
BrPC = PC + SignExt ([Cond]BrAddr << 2)
Flags: Negative (N), Zero (Z), Overflow (V), Carry (C)
Category B.cond Condition (if

SUBS or SUBIS)
B.cond Condition

Equality B.EQ Z = 1 B.NE Z = 0
Signed < and <= B.LT N != V (signed) B.LE ~(Z = 0 & N = V)
Signed > and >= B.GT Z = 0 & N = V B.GE N = V
Unsigned < and <= B.LO C = 0 B.LS ~(Z = 0 & C = 1)
Unsigned > and >= B.HI Z = 0 & C = 1 B.HS C = 1
Instruction Formats
R-format:
11b: opcode 5b: Rm 6b: shamt 5b: Rn 5b: Rd
I-format:
10b: opcode 12b: immediate 5b: Rn 5b: Rd
D-format (note: op field is 2b):
11b: opcode 9b: data trans. addr op 5b: Rn 5b: Rt
B-format:
6b: opcode 26b: branch address
CB-format:
8b: opcode 19b: conditional branch address 5b: Rt
IM-format:
11b: opcode 16b: MOV immediate 5b: Rd
Register List
Name Use Needs to be preserved

across function call?
X0-X7 Function arguments / results N
X8 Indirect result location N
X9-X18 Temporary values N
X19-X27 Saved values Y
X28 (SP) Stack pointer Y
X29 (FP) Frame pointer Y
X30 (LR) Return address Y
XZR (31) Constant value 0 n/a (const.)

