CS 351 Exam 3 Mon. 5/11/2015

Name:

Rules and Hints

e You may use one handwritten 8.5 x 11”7 cheat sheet (front and back). This is the
only additional resource you may consult during this exam. No calculators.

e Where applicable, you may write your answers in the form [mathematical expres-
sion/[units]. There is no need to actually do the arithmetic.

e Include step-by-step explanations and comments in your answers, and show as much
of your work as possible, in order to maximize your partial credit.

e Answer these questions on the provided scratch paper. Clearly label each answer.

Grade

Your Score | Max Score
Problem 1: Cache tracing 20
Problem 2: Address translation and page table sizing 20
Problem 3: Reliability metrics 8
Problem 4: Disks and RAID 22
Problem 5: Flash 8
Problem 6: Parallelizing code 10
Problem 7: GPU vs. CPU 12
Total 100

Page 1 of 7



Problem 1: Cache tracing (20 points)

You have a hilariously tiny 2-way set-associative, write-back cache that stores 64B of data
in 8-byte blocks. Memory addresses are 12 bits.

Part A (4 points)

How many blocks does this cache have? How many sets does it have?

Part B (10 points)

Draw the final state of the cache (data and metadata) after the following sequence of
references (which are all writes). Assume that all blocks in the cache are initially invalid.
4,5,6, 7,20, 21, 22, 23, 64, 65, 128, 129, 4, 5, 6

Part C (3 points)

How many bytes will be written back to the next level of the memory hierarchy during this
sequence of operations? If there are 2 write-back operations to a particular address, you
should count this as 2 bytes. Explain.

Part D (3 points)

If this were a write-through cache, how many bytes would be written to the next level of
the memory hierarchy? Explain.

Page 2 of 7



Problem 2: Address translation and page table sizing
(20 points)

Your memory system has hilariously tiny virtual and physical address spaces, as follows:
e 64B pages
e 12-bit virtual addresses
e 16-bit physical addresses

Part A (4 points)

How many virtual pages does each process have, and how many physical pages does the
system have?

Part B (4 points)

If each page has 3 protection bits, how large is a page table entry? Show your work.

Part C (6 points)

Draw Process X’s page table if all of its pages are currently mapped to physical memory, in
the following pattern: virtual page 0 is mapped to the largest physical page, virtual page
1 is mapped to the next largest, etc.

Part D (6 points)

Based on your page table from Part D, translate each of these virtual addresses from Process
X to the corresponding physical address:

o 0x97f
e 0x953

e 0x800

Page 3 of 7



Problem 3: Reliability (8 points)

For each scenario below, explain whether it will increase, decrease or have no effect on each
metric for the servers in a datacenter. Consider the scenarios independently.

Part A (4 points)

A flaky network switch that used to crash every 3 weeks now crashes every 4 weeks instead.
e Effect on MTTF:
e Effect on MTTR:

e Effect on MTBF:

e Effect on availability:

Part B (4 points)

The disks in a storage array are replaced with disks that are identical in all respects except
that their capacity is larger, so they take longer to reconstruct after a failure.

o Effect on MTTF:
o Effect on MTTR:

e Effect on MTBF:

e Effect on availability:

Page 4 of 7



Problem 4: Disks and RAID (22 points)

You have 8 TB of unique, non-redundant data. You are planning to store it on an array of
disks, where each disk has the following characteristics:

Average seek time of 4 ms
Rotation speed of 10,000 rpm
Transfer rate of 100 MB/s

1 TB capacity

Part A: Disk performance (8 points)

How long will it take you to do a 512B read on a single disk? How long will it take you to
do a 1 MB read (using 10° for MB)?

Part B: RAID 1 (7 points)

Answer the following questions about constructing a RAID 1 array for your data from these

disks:

How many total disks will you need?

If small accesses are evenly distributed across your data, how many small reads can
you do in parallel on this array?

If small accesses are evenly distributed across your data, how many small writes can
you do in parallel on this array?

Based on your answers to Part A, how long will it take to do a single 1 MB read on
this array?

Based on your answers to Part A, how long will it take to do a single 1 MB write on
this array?

Part C: RAID 5 (7 points)

Answer the following questions about constructing a RAID 5 array for your data from these
same disks, with a chunk size of significantly less than 1 MB:

How many total disks will you need?

If small accesses are evenly distributed across your data, how many small reads can
you do in parallel on this array?

If small accesses are evenly distributed across your data, how many small writes can
you do in parallel on this array?

Based on your answers to Part A, how long will it take to do a single 1 MB read on
this array?

Based on your answers to Part A, how long will it take to do a single 1 MB write on
this array?

Page 5 of 7



Problem 5: Flash (8 points)

List and briefly explain the three basic operations on a solid-state disk. State the minimum
granularity of each operation (e.g. byte, page, block...). Indicate which operation takes the
longest.

Problem 6: Parallelizing code (10 points)

Consider the following code. Each function in this code takes a long time to run, and the
functions f1 through f5 have no side effects.

A= f1(X, Y); // Line 1
B = f2(A, X); // Line 2
C = f3(A); // Line 3
D= f4(Y); // Line }J
E = {5(B, C); // Line &5

Part A (4 points)

Draw a dependency graph with one node for each line.

Part B (3 points)

At most, how many threads can this code take advantage of?

Part C (3 points)

Label the nodes of your dependency graph with a set of times that will ensure the maximum
speedup when the code is parallelized. (For example: Line 1 takes 3 units of time, Line 2
takes 4 units, etc.).

Page 6 of 7



Problem 7: GPU vs. CPU (12 points)

For this problem, consider a loop of the form

for (unsigned long i = 0; i < N; i++) {
// Loop contents
}

Assume that this loop operates on an array A of size N.

Part A: Mapping to threads (6 points)
Assume that the loop contents are simply:

Ali]++;

e If you parallelize this loop on a 4-core CPU that supports 2 hardware threads per
core, how many threads would you create? Which values of ¢« would you assign to
each thread, and why? State your answers in terms of V, if applicable.

e If you parallelize this loop on an nVidia GPU that supports 1024 threads per block,
how many threads (total) would you create, and how would you arrange them in
terms of blocks and threads per block? Which values of ¢« would you assign to each
thread, and why? State your answers in terms of N, if applicable.

Part B: Suitability for GPU (6 points)

e Give or describe an example of loop contents that would be less suited to a GPU
than A[i]++;. Explain.

e Give or describe an example of loop contents that would be more suited to a GPU
than A[i]++;. Explain.

Page 7 of 7



