CS 351 Exam 2 Mon. 4/6/2015

Name:

Rules and Hints

The MIPS cheat sheet and datapath diagram are attached at the end of
this exam for your reference.

You may use one handwritten 8.5 x 11”7 cheat sheet (front and back). This is the
only additional resource you may consult during this exam. No calculators.

You may write your answers in the form [mathematical expression/[units]. There is
no need to actually do the arithmetic.

Include step-by-step explanations and comments in your answers, and show as much
of your work as possible, in order to maximize your partial credit.

You may use extra scratch paper if you need more space, but make it clear where to
find your answer to each question.

Grade
Your Score | Max Score
Problem 1: Tracing the MIPS datapath 30
Problem 2: Pipeline performance and implementation 25
Problem 3: Average memory access time 20
Problem /4: Cache tracing 25
Total 100

Problem 1: Tracing the MIPS datapath (30 points)

Answer the following questions about the single-cycle datapath provided at the end of this
exam. This is the datapath that executes a single instruction, from start to finish, on every
clock cycle. Be sure to explain your answers if you want to receive partial credit.

Consider the execution of this instruction: BEQ $t0, $zero, $L

Assume the following:
e The bits of this instruction are stored in addresses 1000-1003 in memory.
e The initial value in $t0 is 0.
e The immediate operand (L) is Oxfffe.

Provide the exact numeric answer (in decimal, hex, or binary) to each question if possible.
If not, describe the value without stating an exact number.

Part A: Instruction memory (4 points)

What value goes into the instruction memory’s Read Address port? How many bits is that
value?

What is the value of the instruction memory’s Instruction/31:0] output?

Part B: Register file (7 points)

What values go into the register file’s Read Register 1 and Read Register 2 ports? How
many bits are those values?

What values go into the register file’s Write Register and Write Data ports? How many
bits are those values?

What is the value of the RegWrite control signal?

Part C: ALU (7 points)

What are the values of the ALU’s two data inputs? How many bits are those values?

What two values go into the ALU control unit? How many bits are those values?

What are the values of the ALU’s ALU result and Zero outputs? How many bits are those
values?

Part D: Branch target adder (7 points)

What two values are input to the top right adder? How many bits are those values?

What is the output of the top right adder?

What is the output of the top right mux? Conceptually, what is this mux choosing between?

Part E: Modifying the datapath (5 points)

How would you change this datapath to support BNE instead of BEQ?

Problem 2: Pipelining (25 points)

You have a 5-stage MIPS pipeline in which each stage takes the following number of cycles:
IF: 200 ps

ID: 300 ps

EX: 200 ps

MEM: 250 ps

WB: 150 ps

Part A: Cycle time (8 points)

What is the minimum cycle time of a single-cycle version of this processor?

What is the minimum cycle time of a pipelined version of this processor?

Part B: Performance (8 points)

How many cycles will each version of this processor take to execute a sequence of 1,000,000
instructions with no stalls due to data or control hazards?

Which version will be faster for this sequence of instructions? Explain.

Part C: Branch prediction (9 points)

Consider a branch that alternates forever between T and NT. What is the long-term accu-
racy of each of the following predictors for this branch?

e Always predict not taken

e A 1-bit predictor

e A 2-bit predictor
Explain your answers.

Problem 3: Average memory access time (20 points)

You have a system with the following memory hierarchy:
e Separate L1 instruction and data caches, which each have access times of 1 cycle and
hit rates of 95%
e A unified L2 cache with an access time of 5 cycles and a hit rate of 80%
e A unified L3 cache with an access time of 10 cycles and a hit rate of 60%
e Main memory with an access time of 100 cycles

Part A: AMAT (10 points)

What is the average memory access time, in cycles, on this system?

Part B: CPI (10 points)

If 30% of instructions are loads or stores, how many memory accesses does the average
instruction make?

If the base CPI of this system is 1 cycle, and accesses to L1 are included in this base CPI,
what is the actual CPI including memory stalls?

Problem 4: Cache tracing (25 points)

For this problem, consider a cache that
e Has 16 blocks (entries)
e [s direct-mapped
e Has 1 byte per block
e [s write-back
Memory addresses on this system are 10 bits.

Part A: Tracing (15 points)

Give a sequence of at least 6 memory references that will have a hit rate of exactly 50%,
assuming the cache starts out empty. Then, draw the final cache state (data and metadata).

Part B: Other mapping schemes (10 points)

Give a sequence of at least 6 memory references that will have a hit rate of 0% for the
cache from Part A, but at least 50% for a fully associative cache that has 16 blocks and 1

byte per block. Explain.

Give a sequence of at least 6 memory references that will have a hit rate of 0% for the
cache from Part A, but at least 50% for a direct-mapped cache that has 4 blocks and 4
bytes per block. Explain.

10

MIPS Arithmetic Instructions

Instruction Operation Fmt Opcode Funct
ADD $rd, $rs, $rt reg[rd] = reg|rs] + reg|rt] R 0 0x20
ADDI $rt, $rs, imm reg[rt] = reg[rs] + SignExt(imm) I 0x08
ADDU $rd, $rs, $rt reg[rd] = reg|rs] + reg|rt] R 0 Ox21
ADDIU $rt, $rs, imm | reg[rt] = reg[rs] + SignExt(imm) I 0x09
SUB $rd, $rs, $rt reg[rd] = reg|rs] - reg[rt] R 0 0x22
SUBU $rd, $rs, $rt reg[rd] = reg|rs] - reg[rt] R 0 0x23
LUI $rt, imm reg[rt] = (imm << 16) | 0 I 0xOf

The signed instructions (ADD, ADDI, SUB) can cause overflow exceptions.

MIPS Logical Instructions

Instruction Operation Fmt Opcode Funct
AND $rd, $rs, $rt reg[rd] = reg[rs] & reg(rt] R 0 O0x24
ANDI $rt, $rs, imm | reg[rt] = reg[rs] & ZeroExt(imm) I 0x0c

NOR $rd, $rs, $rt reg[rd] = ~(reg[rs] | reg[rt]) R 0 0x27
OR $rd, $rs, $rt reg[rd] = reg]rs] | reg[rt] R 0 0x25
ORI $rt, $rs, imm reg[rt] = reg[rs] | ZeroExt(imm) I 0x0d

SLL $rd, $rt, shamt | reg[rd] = reg[rt] << shamt R 0 0x00
SRL $rd, $rt, shamt | reg[rd] = reg[rt] >> shamt R 0 0x02
The SLL and SRL instructions fill in the “shifted-out” bits with O.

MIPS Branch and Jump Instructions

Instruction Operation Fmt Opcode Funct
BEQ $rs, $rt, label | if (reg[rs] == reg[rt]) PC=BrAddr I 0x04

BNE $rs, $rt, label | if (reg[rs] != reg[rt]) PC=BrAddr I 0x05

J label PC = JumpAddr J 0x02

JAL label $ra = PC+4; PC = JumpAddr J 0x03

JR $rs PC =reg[$rs] R 0 0x08

BrAddr = PC + 4 + SignExt (imm << 2)
JumpAddr = (PC+4)[31:28] | (26-bit imm << 2)

MIPS Memory Access Instructions

Instruction Operation Fmt Opcode Funct
LW $rt, imm($rs) reg[rt] = Mem([rs + SignExt(imm)] I 0x23
SW $rt, imm($rs) Mem[rs + SignExt(imm)] = reg[ri] I 0x2b
LH $rt, imm($rs) Loads 16b from memory I 0x21
LHU $rt, imm($rs) | Loads 16b from memory I 0x25
SH $rt, imm($rs) Stores 16b to memory I 0x29
LB $rt, imm($rs) Loads 8b from memory I 0x20
LBU $rt, imm($rs) | Loads 8b from memory I 0x24
SB $rt, imm($rs) Stores 8b to memory I 0x28

LH and LB sign-extend the values read from memory in order to fill the leftmost
bits of the 32-bit register. LHU/LBU zero-extend.

MIPS Comparison Instructions

Instruction Operation Fmt Opcode Funct
SLT $rd, $rs, $rt reg[rd] = ($rs < $rt) R 0 Ox2a
SLTI $rt, $rs, imm reg[rt] = ($rs < SignExt(imm)) I 0x0a
SLTU $rd, $rs, $rt reg[rd] = ($rs < $rt) R 0 O0x2b
SLTIU $rt, $rs, imm | reg[rt] = ($rs < SignExt(imm)) I 0x0b
Instruction Formats
R-format

| 6b:opcode | 5Bb:rs [Bb:rt | 5b:rd | 5b: shamt | 6b: funct |
I-format

| 6b:opcode | 5Bb:rs [5b:rt | 16b: immediate operand \
J-format

| 6b: opcode | 26b: JumpAddr[28:2] \

Register List

Name Number Use Preserved across
function call?
$zero 0 Constant value 0 Y
Sat 1 Assembler temporary N
$vO-$v1 2-3 Function return values N
$a0-$a3 4-7 Function arguments N
$t0-$t7 8-15 Temporary values N
$s0-$s7 16-23 Saved values Y
$t8-$t9 24-25 More temporary values N
$kO-$k1 26-27 Reserved for OS kernel N
$agp 28 Global (heap) pointer Y
$sp 29 Stack pointer Y
$fp 30 Frame pointer Y
$ra 31 Return address Y

0
Add '\I.,ll
X
ALU
4= Add gyt J
/ \J RegDst
/ Branch
/ \ MemRead
Instruction [31—26]([MemtoReg
\Control ALUO
\\ |_MemWrite
\ | ALUSrc
\, RegWrite
1
ool Instruction [25-21] Read
eal ;
> PC 1 address register 1. Reaq
Instruction [20—16] Read data 1
Instruction | || register 2
(31-0) Write Read Address’ 10
Instruction | | |instruction [15-11] register data2
memory |(¢——M7M |
| Write
data Registers Wiite Data
dartla memory|
Instruction [15-0 16 m 32 /\
ks Sign [ALU

@ “s ntrol/
/
Instruction [5-0] |

FIGURE 4.17 The simple datapath with the control unit. The input to the control unit is the 6-bit opcode field from the
instruction. The outputs of the control unit consist of three 1-bit signals that are used to control multiplexors (RegDst,
ALUSrc, and MemtoReg), three signals for con trolling reads and writes in the register file and data memory (RegWrite,
MemRead, and MemWrite), a 1-bit signal used in determining whether to possibly branch (Branch), and a 2-bit control
signal for the ALU (ALUOp). An AND gate is used to combine the branch control signal and the Zero output from the ALU;
the AND gate output controls the selection of the next PC. Notice that PCSrc is now a derived signal, rather than one
coming directly from the control unit. Thus, we drop the signal name in subsequent figures. Copyright © 2009 Elsevier,
Inc. All rights reserved.

Chapter 4 — The Processor — 18

