
CS 351 Exam 2 Wed. 4/2/2014

Name:

Rules and Hints

• You may use one handwritten 8.5 × 11” cheat sheet (front and back). This is the
only additional resource you may consult during this exam. No calculators.

• Include step-by-step explanations and comments in your answers, and show as much
of your work as possible, in order to maximize your partial credit.

• You may use the backs of these pages if you need more space, but make it clear where
to find your answer to each question.

• You may write your answers in the form [mathematical expression][units]. There is
no need to actually do the arithmetic.

Grade

Your Score Max Score

Problem 1: Tracing the MIPS datapath 25

Problem 2: Expanding the MIPS datapath 20

Problem 3: Pipelining and performance 30

Problem 4: AMAT and caches 25

Total 100

Problem 1: Tracing the MIPS datapath (25 points)

Answer the following questions about the single-cycle datapath provided on the second-
to-last page of this exam. This is the datapath that executes a single instruction, from
start to finish, on every clock cycle. Be sure to explain your answers if you want to receive
partial credit.

Consider the execution of this instruction: SUB $t0, $s0, $s1

Assume the following:
• The bits of this instruction are stored in addresses 950–953 in memory.
• The initial values in $t0, $s0, and $s1 are 100, 50, and 7, respectively.

Provide the exact numerical answer to each question if possible. If not, de-
scribe the value without stating an exact number.

Part A: Instruction memory (4 points)

What value goes into the instruction memory’s Read Address port?

What is the value of the instruction memory’s Instruction[31:0] output?

Part B: Register file (7 points)

What values go into the register file’s Read Data 1 and Read Data 2 ports?

What values go into the register file’s Write Register and Write Data ports?

What is the value of the RegWrite control signal?

2

Part C: ALU (7 points)

What are the values of the ALU’s two data inputs?

What two values go into the ALU control unit?

What are the values of the ALU’s ALU result and Zero outputs?

Part D: Branch target adder (7 points)

What two values are input to the top right adder?

What is the output of the top right adder?

What is the output of the top right mux? Conceptually, what is this mux choosing between?

3

Problem 2: Expanding the MIPS datapath (20 points)

In x86, when you return from a function, the return address is popped from the stack
instead of read from a register. Imagine that MIPS implemented a similar ret instruction.
Here is how this instruction would work:

• It would set the next PC to the value that is currently at the top of the stack.
• It would add 4 to the stack pointer.

We want to modify the MIPS datapath to accommodate this instruction.

Part A: Register file (6 points)

Which register(s), if any, would need to be read by this instruction? Explain.

Which register(s), if any, would need to be written by this instruction? Where would the
data come from? Explain.

What should be the value of the RegWrite control signal?

Part B: ALU (4 points)

What operation, if any, should the ALU do this instruction (e.g. add, subtract)? Explain.

What would the ALU’s operands need to be?

4

Part C: Instruction encoding and additional logic (10 points)

Assume that the opcode is fixed, but you can encode the remaining bits of the instruction
however you want. Explain how you would choose to encode them. Hint: choose an
encoding that will make the rest of this problem as easy as possible.

Given your chosen encoding, explain any additional logic you would need to add to the
register file, ALU, or target address computation. Draw any muxes you would add and
clearly label their inputs and outputs, including any new control signals you would add.

How would you set the following control signals?

• MemWrite

• MemRead

• RegDst

• MemToReg

• Branch

• ALUSrc

5

Problem 3: Pipelining and performance (30 points)

Part A: Basic pipeline performance (10 points)

For this question, imagine a MIPS implementation whose pipeline stages all take 300 ps,
except for the second stage, which takes 400 ps.

List the stages of the MIPS pipeline, and briefly explain the goal of each.

If you have a sequence of 1000 independent ADD instructions...

• How many cycles will it take on a single-cycle (non-pipelined) MIPS implementation?

• How many cycles will it take on a pipelined MIPS implementation?

Based on the information at the beginning of this question, which implementation will be
faster for this code snippet, and what is its speedup over the slower implementation?

6

Part B: Data hazards (10 points)

Show a single sequence of MIPS instructions (not including branches) that meets all of the
following criteria on a pipelined MIPS processor:

• Would take 8 cycles to execute if all of the instructions were independent and no data
hazards existed.

• Takes 9 cycles on a processor with all possible forwarding paths enabled.
• Takes 10 cycles on a processor that has to stall until data dependencies are resolved

through the register file.

Show pipeline diagrams to explain your answers.

7

Part C: Branch prediction (10 points)

Consider the following three branch prediction options:
• Predict not taken
• 1-bit predictor
• 2-bit predictor

You have an inner loop with the following pattern: T, T, T, T, NT, NT, T, T, NT, NT.

What are the long-term accuracies of each of these 3 predictors for this loop pattern? If
the long-term accuracy of one of the predictors depends on its initial state, explain.

8

Problem 4: AMAT and caches (25 points)

A sequential program X executing on a processor P has the following memory access
statistics:

• Separate L1 instruction and data caches. Both have access times of 1 cycle. The
instruction cache has a 96% hit rate, and the data cache has a 90% hit rate.

• A unified L2 cache for both instructions and data, with an access time of 6 cycles
and an 80% hit rate.

• A main memory with an access time of 90 cycles.

Part A: AMAT (10 points)

What is the average memory access time, in cycles, of an instruction fetch operation?

What is the average memory access time, in cycles, of a data load or store operation?

Part B: CPI (10 points)

If 25% of instructions are loads or stores, how many memory accesses does the average
instruction make?

Assume that the base CPI for this program includes the access times for the L1 instruction
and data caches. How many cycles do memory access stalls add to the average CPI?

9

Part C: Locality (5 points)

Explain why accesses to the instruction cache are likely to exhibit spatial and temporal
locality. Your answer should:

• Be specific to instruction accesses and not memory accesses in general

• Demonstrate that you know what spatial and temporal locality are, and how to
identify them in code.

10

Chapter 4 — The Processor — 18

FIGURE 4.17 The simple datapath with the control unit. The input to the control unit is the 6-bit opcode field from the
instruction. The outputs of the control unit consist of three 1-bit signals that are used to control multiplexors (RegDst,
ALUSrc, and MemtoReg), three signals for con trolling reads and writes in the register file and data memory (RegWrite,
MemRead, and MemWrite), a 1-bit signal used in determining whether to possibly branch (Branch), and a 2-bit control
signal for the ALU (ALUOp). An AND gate is used to combine the branch control signal and the Zero output from the ALU;
the AND gate output controls the selection of the next PC. Notice that PCSrc is now a derived signal, rather than one
coming directly from the control unit. Thus, we drop the signal name in subsequent figures. Copyright © 2009 Elsevier,
Inc. All rights reserved.

MIPS Arithmetic Instructions
Instruction Operation Fmt Opcode Funct
ADD $rd, $rs, $rt reg[rd] = reg[rs] + reg[rt] R 0 0x20
ADDI $rt, $rs, imm reg[rt] = reg[rs] + SignExt(imm) I 0x08
ADDU $rd, $rs, $rt reg[rd] = reg[rs] + reg[rt] R 0 0x21
ADDIU $rt, $rs, imm reg[rt] = reg[rs] + SignExt(imm) I 0x09
SUB $rd, $rs, $rt reg[rd] = reg[rs] - reg[rt] R 0 0x22
SUBU $rd, $rs, $rt reg[rd] = reg[rs] - reg[rt] R 0 0x23
LUI $rt, imm reg[rt] = (imm << 16) | 0 I 0x0f
The signed instructions (ADD, ADDI, SUB) can cause overflow exceptions.
MIPS Logical Instructions
Instruction Operation Fmt Opcode Funct
AND $rd, $rs, $rt reg[rd] = reg[rs] & reg[rt] R 0 0x24
ANDI $rt, $rs, imm reg[rt] = reg[rs] & ZeroExt(imm) I 0x0c
NOR $rd, $rs, $rt reg[rd] = ~(reg[rs] | reg[rt]) R 0 0x27
OR $rd, $rs, $rt reg[rd] = reg[rs] | reg[rt] R 0 0x25
ORI $rt, $rs, imm reg[rt] = reg[rs] | ZeroExt(imm) I 0x0d
SLL $rd, $rt, shamt reg[rd] = reg[rt] << shamt R 0 0x00
SRL $rd, $rt, shamt reg[rd] = reg[rt] >> shamt R 0 0x02
The SLL and SRL instructions fill in the “shifted-out” bits with 0.
MIPS Branch and Jump Instructions
Instruction Operation Fmt Opcode Funct
BEQ $rs, $rt, label if (reg[rs] == reg[rt]) PC=BrAddr I 0x04
BNE $rs, $rt, label if (reg[rs] != reg[rt]) PC=BrAddr I 0x05
J label PC = JumpAddr J 0x02
JAL label $ra = PC+4; PC = JumpAddr J 0x03
JR $rs PC = reg[$rs] R 0 0x08
BrAddr = PC + 4 + SignExt (imm << 2)
JumpAddr = (PC+4)[31:28] | (26-bit imm << 2)
MIPS Memory Access Instructions
Instruction Operation Fmt Opcode Funct
LW $rt, imm($rs) reg[rt] = Mem[rs + SignExt(imm)] I 0x23
SW $rt, imm($rs) Mem[rs + SignExt(imm)] = reg[rt] I 0x2b
LH $rt, imm($rs) Loads 16b from memory I 0x21
LHU $rt, imm($rs) Loads 16b from memory I 0x25
SH $rt, imm($rs) Stores 16b to memory I 0x29
LB $rt, imm($rs) Loads 8b from memory I 0x20
LBU $rt, imm($rs) Loads 8b from memory I 0x24
SB $rt, imm($rs) Stores 8b to memory I 0x28
LH and LB sign-extend the values read from memory in order to fill the leftmost
bits of the 32-bit register. LHU/LBU zero-extend.

MIPS Comparison Instructions
Instruction Operation Fmt Opcode Funct
SLT $rd, $rs, $rt reg[rd] = ($rs < $rt) R 0 0x2a
SLTI $rt, $rs, imm reg[rt] = ($rs < SignExt(imm)) I 0x0a
SLTU $rd, $rs, $rt reg[rd] = ($rs < $rt) R 0 0x2b
SLTIU $rt, $rs, imm reg[rt] = ($rs < SignExt(imm)) I 0x0b

Instruction Formats

R-‐format	
6b: opcode 5b: rs 5b: rt 5b: rd 5b: shamt 6b: funct

I-‐format	
6b: opcode 5b: rs 5b: rt 16b: immediate operand

J-‐format	
6b: opcode 26b: JumpAddr[28:2]

Register List
Name Number Use Preserved across

function call?
$zero 0 Constant value 0 Y
$at 1 Assembler temporary N
$v0-$v1 2-3 Function return values N
$a0-$a3 4-7 Function arguments N
$t0-$t7 8-15 Temporary values N
$s0-$s7 16-23 Saved values Y
$t8-$t9 24-25 More temporary values N
$k0-$k1 26-27 Reserved for OS kernel N
$gp 28 Global (heap) pointer Y
$sp 29 Stack pointer Y
$fp 30 Frame pointer Y
$ra 31 Return address Y

