Name: _____________________________

Rules and Hints

• You may use one handwritten 8.5 × 11” cheat sheet (front and back). This is the only additional resource you may consult during this exam. *No calculators.*

• Include step-by-step explanations and comments in your answers, and show as much of your work as possible, in order to maximize your partial credit.

• You may use the backs of these pages if you need more space, but make it clear where to find your answer to each question.

• You may write your answers in the form *[mathematical expression][units]*. There is no need to actually do the arithmetic.

Grade

<table>
<thead>
<tr>
<th>Problem</th>
<th>Your Score</th>
<th>Max Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem 1: Warmup</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Problem 2: Speedup and energy</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Problem 3: Processor performance and power</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Problem 4: MIPS functions</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Problem 5: MIPS arrays</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Problem 1: Warmup (10 points)

Part A (2 points)

+1 extra credit point if entire class gets it right.

How many bits are in a byte?

Part B (4 points)

Put the following in order from smallest to largest:

- Gigabyte (GB)
- Kilobyte (KB)
- Megabyte (MB)
- Terabyte (TB)

Part C (4 points)

The x86 ISA has an instruction

\texttt{mov \%reg, \%reg}

which copies a value from one register to another. Answer the following questions:

- If you were to add this instruction to the MIPS ISA, what encoding format would you use, and how would you assign values to each field?

- Why do you think MIPS doesn’t have this instruction?
Problem 2: Speedup and energy (10 points)

Consider the following graph that I stole from the Internet:

<table>
<thead>
<tr>
<th>Image</th>
<th>Time (sec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRI1</td>
<td>14.06</td>
</tr>
<tr>
<td>MRI2</td>
<td>20.31</td>
</tr>
<tr>
<td>MRI3</td>
<td>18.19</td>
</tr>
<tr>
<td>MRI4</td>
<td>11.90</td>
</tr>
<tr>
<td>MRI5</td>
<td>16.31</td>
</tr>
<tr>
<td>MRI6</td>
<td>21.02</td>
</tr>
</tbody>
</table>

Part A: Speedup (5 points)

To process the image MRI1, which is faster: the CPU or the GPU? What is its speedup over the slower one?

Part B: Energy (5 points)

If the CPU consumes an average power of 50 W, and the GPU consumes 150 W, which one uses more energy to process MRI1? Explain/show work.
Problem 3: Processor performance and power (30 points)

You have a workload with the following characteristics:
- 1 billion dynamic instructions
- 30% integer instructions
- 30% floating-point instructions
- 20% branches
- 20% loads and stores
- The integer and floating-point instructions are perfectly parallelizable. In other words, if you have \(N \) cores, you can have all cores executing \(\frac{1}{N} \) of the original instructions at the same time. However, the branches and load/stores are serial.

You have a processor with the following characteristics:
- 4 cores
- Clock speed of 2.8 GHz
- Operating voltage of 1.5 V
- Static power of 20 W
- Dynamic power of 60 W

Part A: Execution time (10 points)

What is the execution time of your workload on this processor?
Parts B and C: Optimization

The processor manufacturer is considering two new versions of this processor:

Option A An 8-core version with a dynamic power of 90W and the same static power and clock speed.

Option B A 3.2 GHz version with an operating voltage of 1.75 V and the same static power, capacitive load, and number of cores.

Part B: Optimized performance

What are the speedups of Option A over the original processor and Option B over the original processor?

Part C: New power consumption

What is the *total power consumption* of Option A? What about Option B?
Problem 4: MIPS functions (25 points)

Translate the following C code to MIPS. Obey all MIPS conventions about functions, registers, and stack usage.

```c
int f(int a) {
    if (a < 2) return a;

    return a % 2 + f(a / 2); // note the recursive call
}
```

Bonus (3 points)

Provide a concise description in English of what this function computes.
Problem 5: MIPS arrays (25 points)

Translate the following C code to MIPS. Obey all MIPS conventions about functions, registers, and stack usage. Assume that the array a is an array of characters and is located at the top of the stack.

```c
for (int i=0; i < 100; i++) {
    if (a[i] == 'e' || a[i] == 'E')
        a[i] = '3'; // so l33t
}
```