
CS 351 Exam 4, Fall 2011

Your name: __

Rules
• You may use one handwritten 8.5 x 11” cheat sheet (front and back). This

is the only resource you may consult during this exam.
• Include explanations and comments in your answers in order to maximize

your partial credit. However, you will be penalized for giving extraneous
incorrect information.

• You may use the backs of these pages if you need more space, but make
it clear where to find your answer to each question.

• Unless otherwise specified, you do not need to work out the arithmetic on
math problems. Just do enough algebra to set up an answer of the form:
Answer = [arithmetic expression] [units]

Grade:

 Your Score Max Score

Problem 1 45

Problem 2 10

Problem 3 15

Problem 4 30

Total 100

Page 2 of 9

Problem 1: Reliability, Disk Performance, and RAID (45 points)

Assume a dataset large enough to fill four 1-TB disks.

The average seek time of one of these disks is 5 ms, and the rotation speed is
15,000 rpm. The controller overhead is negligible. Each diskʼs transfer rate is 100
MB/s.

These disks handle two types of requests:

• Small requests – dominated by latency
• Large requests – 20 MB requests consisting of latency plus transfer time

a) [2 points] How many BYTES of data is this dataset? Assume weʼre using
powers of 10, not powers of 2. You can use scientific notation.

b) [8 points] How long does it take to do a 20MB request if the data is stored
consecutively on a single disk?

Page 3 of 9

c) [8 points] In a certain RAID configuration, a disk fails once every 720 calendar
days, and it takes one hour to reconstruct the data.

What is the MTTF of the array?

What is the MTBF?

What is the MTTR?

What is the availability?

Page 4 of 9

d) [19 points] If we configure these disks in a RAID 5 array…

How many extra disks must we buy?

How long will it take to complete 20 small reads (assuming they are evenly
distributed)? Explain.

How long will it take to complete 20 small writes (assuming they are evenly
distributed)? Explain.

How long will it take to complete one large read?

How long will it take to complete one large write?

Page 5 of 9

e) [8 points] RAID 4, unlike RAID 5, uses a dedicated parity disk. Which of the
performance numbers above would be different if we used RAID 4? Show the
new performance for these accesses.

Page 6 of 9

Problem 2: I/O (10 points)

You have an important workload that scans through large chunks of sequential
data, replacing an average of 1 byte for every MB that it reads.

a) [6 points] You are choosing between hard disks and flash for your workload.
Explain which storage technology would work best in terms of…

- Performance?

- Cost (considering reliability and power consumption)?

b) [4 points] Would you use polling, interrupts, or DMA to handle the reads from
disk? Why?

	

Page 7 of 9

Problem 3: Parallel hardware (15 points)

Answer the following questions.

a. You are writing a program that launches multiple threads for interacting with
different I/O devices. Your CPU can only support a few hardware threads, so
your friend suggests porting your program to a GPU. Comment on this idea.

b. You are trying to implement a reduction tree on a GPU. Which of these two
approaches is likely to perform better, and why?

Note: here tid is the ID of the thread within the block.

Kernel 1:
for(int pass=1; pass < blockDim.x; pass *= 2) {
 middle = blockDim.x / (2 * pass)

if (tid < middle) {
// The first half, 4th, etc. of the threads

 data[tid] += data[tid + middle]
}

// wait for threads to catch up before going to next level
__syncthreads();

}

Kernel 2:
for(int pass=1; pass < blockDim.x; pass *= 2) {

if (tid % (2*pass) == 0) {
// Every 2nd, 4th, etc. thread
data[tid] += data[tid + pass];

}
// wait for threads to catch up before going to next level

__syncthreads();
}

Page 8 of 9

Problem 4: Parallel Programming (30 points)

a. [5 points] Write a C++ for-loop which would be appropriate for static scheduling
in OpenMP. Explain.

b. [5 points] How would this loop have to be different for dynamic scheduling to
be the right approach?

c. [5 points] Explain the problem with the following parallelization. How might you
get around the problem?

#pragma omp parallel for
for (int i=0; i < N-1; i++)
 A[i] += A[i+1]

Page 9 of 9

d. [5 points] Draw a dependency graph with nodes for each statement.

A = f1(a, b) // Statement 1
B = f2(a, c) // Statement 2
C = f3(A, d) // Statement 3
D = f4(B, A) // Statement 4
A = f5() // Statement 5

[5 points[If each of the functions f_i is purely sequential, how many threads could
this code be profitably split into?

	
	
	
	
	
	

[5 points] Are there any restrictions on reordering this code that are not captured
in your dependency graph? Explain.

