CS 351 Final Exam Solutions

Notes:
* You must explain your answers to receive partial credit.

* You will lose points for incorrect extraneous information, even if the answer
is otherwise correct.

Question 1: Short answer [25 points].
a. Define the compiler terms front end and back end.

Front end: The part of the compiler that translates source code o an
intermediate internal representation.

Back end: The part of the compiler that translates the intermediate internal
representation o machine code.

Which one is responsible for architecture-specific optimizations, and why?

Back end: The front end is machine-independent, while the back end
translates the machine-independent IR to the architecture-specific machine
code.

b. Whatis a SIMD instruction? (Just stating what it stands for is not sufficient
for full credit.)

SIMD ("single instruction, multiple data") has two meanings, either of which
earns full credit:
1. Aninstruction that specifies a single operation to be carried out
multiple times on different data, like a vector instruction
2. A specific type of #1 that treats a normal register as a vector of
smaller operands, often seen in the media extensions to general-
purpose instruction sets.

What kind of parallelism does it exploit?
DLP

c. Whatis VLIW? (Just stating what it stands for is not sufficient for full credit.)
A VLIW ("very long instruction word") instruction set packages multiple
instructions that can execute at the same time into a single word.

What kind of parallelism does it exploit?
ILP

Does it do so statically (at compile time) or dynamically (at runtime)?
Explain.
Statically. The compiler is responsible for finding instructions that can
execute at the same time; that is, instructions that are independent and
which the machine has sufficient hardware to execute at once.

d. What are the sources of overhead for context switching (switching between
threads) on a uniprocessor?

The big ones are saving and restoring register state, as well as raising and

returning from the exception.

e. What model for inter-processor communication is typically used in clusters?
Why?

Message-passing; it matches the physical reality of processors in clusters
(connected over a network) better than shared memory.

(Talking about specific distributed programming platforms that abstract
this away is also OK.)

Question 2: Compiler optimizations [20 points].
(a) In MIPS or a higher-level language, show an example of dead code
elimination; that is, show the code before and after the optimization is
applied.

Before:
if (false) cout <« "Falsel”;
a=6;

After:
a=6;

(b) In MIPS or a higher-level language, show an example of constant
propagation; that is, show the code before and after the optimization is

applied.
Before:

x=5;

y=x+3;

z=y*2;
After:

x=5;

y=8

z=16;

(c) For the following C code:

for

}

(int 1=0; i<N; 1i++) {

ali] = b[i] + c[i];
dfi] = e[i] + f[1];

Assume the following:

O
O
O

The arrays are integer arrays, where an integer is 1 word long.

N is very large.

The loop counter i, the array size N, and the base addresses of the six
arrays are kept in registers at all times.

The code runs on a machine whose L1 cache is fully associative and
consists of four 4-word blocks.

Name one optimization that would improve both the cache hit rate and the
loop overhead of this code.

Loop unrolling. (Loop fission improves the hit rate but does not improve the
loop overhead.)

Show the code after applying this optimization to the extent that cache
misses are minimized. You can abbreviate at your own risk - if it’s
completely clear what you mean, you'll get full credit.

To maximize the hit rate, we can unroll the loop 4 times. This way, when we
miss on array[i] and bring in a 4-word block, we will immediately access
array[i+1], array[i+2], and array[i+3].

for (int i=0; ikN; i+=4) {

a[i]= b[i] + c[i];

ali+1] = b[i+1] + c[i+1];
ali+2] = b[i+2] + c[i+2];
a[i+3] = b[i+3] + c[i+3];
d[i]=e[i]+ f[i];

d[i+1] = e[i+1] + f[i+1];
d[i+2] = e[i+2] + f[i+2];
d[i+3] = e[i+3] + f[i+3];

Question 3: Exploiting ILP [25 points].
(a) In MIPS assembly code, show an example of....

...a WAW dependency:

ADD $10, $11, $t2
ADD $t0, $13, $14
(on $10)

...a WAR dependency:

ADD $10, $11, $t2
ADD $11, $13, $14
(on $t1)

...a RAW dependency:

ADD $10, $11, $t2
ADD $t3, $10, $14
(on $10)

(b) Which of the above are true dependencies? Why?

RAW - in a RAW dependency, the first instruction produces a value
that is consumed by the dependent instruction. The other
"dependencies” are artifacts of multiple distinct values using the same
register name. They could be avoided by using a different register

mapping.

(c) For the following MIPS code:

1) Lw $t2, 0($t3)
2) ADD st2, st0, sSt2
3) SUB $t8, $t2, $t0
4) LW st4, 0(SthH)
5) ADD $t4, $t0, St4

Rename these instructions to physical registers $p0 through $p63.

1) LW $p2, 0($p3)

2) ADD $p12, $p0, $p2
We rename $p12 because it is a new value, but not $p2 because we
actually need the value produced by instruction (1)

3) SUB $p8, $p12, $p0
$12 gets renamed to $pl12 because we are looking for the value
produced by instruction (2)

4) LW $p4, 0($p5)

5) ADD $p14, $p0, $p4
See note on instruction (2)

(d) Assume an out-of-order processor with a 5-stage pipeline that works as
follows:

e Stage 1: Fetch 2 instructions from memory.

* Stage 2: Decode and rename the instructions; choose up to 2 ready
instructions to issue to the execution units.

e Stage 3: (identical to MIPS EX stage, except that 2 instructions can be
processed at once)

* Stage 4: (identical to MIPS MEM stage, except that 2 instructions can be
processed at once. We unrealistically assume a 1-cycle memory access time
in all cases.)

e Stage 5: Write back to the physical register file; update the reorder buffer;

“officially” complete up to 2 instructions by removing them from the reorder

buffer.
Assume that an instruction can start Stage 3 in the cycle immediately after its
operands are produced. That is, assume that the issue logic can figure out that
an instruction’s operands will be ready in time for the next cycle.

In what order will the instructions from Part (c) be issued? (That is, in what
order will they reach the EX stage?) List the instructions that will be issued
earliest first, and put instructions that will issue during the same cycle on the

same line.

Tracing out the execution below (which goes farther than you would have
to go to solve this problem):

1 (reaches EX in Cycle 3)
4 (reaches EX in Cycle 4)
2 (reaches EX in Cycle 5)
3, 5 (reach EX in Cycle 6)

Cycle 1: 1 and 2 are fetched

Cycle 2: 3 and 4 are fetched: 1 and 2 are decoded: 1 is ready, 2 waits on
$p2

Cycle 3: 5 is fetched; 3 and 4 are decoded:; 4 is ready, 2 waits on $p2, 3
waits on $p12; 1 is in the EX stage

Cycle 4: 5 is decoded; 2 will be ready next cycle, 3 waits on $p12, 5 waits
on $p4; 4 is in EX; 1 is in MEM (and produces its result)

Cycle 5: 3 will be ready next cycle, 5 will be ready next cycle; 2 is in EX
(and produces its result); 4 is in MEM (and produces its result); 1
completes and commits

Cycle 6: 3 and 5 are in EX, 2 is in MEM, 4 completes but can't commit
Cycle 7: 3 and 5 are in MEM, 2 completes and commits

Cycle 8: 3 and 5 complete; 3 and 4 commit (only 2 at a time can commit in
order)

Cycle 9: 5 commits

Question 4: Cache coherence [20 points].

For this problem, see the state machine on the final page of this test, which is
identical to Figure 9.3.4 in your textbook.

(a)Fill out the following chart for a two-processor system executing the following
sequence of instructions and adhering to the cache protocol in the diagram. Assume

the following:

* The data from addresses 100 and 104 are initially stored in both processors’
caches and marked as clean/shared.
* The cache block size is 1 word.

“Before” and “After” refer to the block’s state in cache before the instruction is

executed and after it is executed, respectively.

Processor: Hit or miss? | Block's Block’s Block’s Block’s
Instruction state in PO | state in PO | state in P1 | statein
cache cache cache P1 cache
(before) (after) (before) (after)
P0O:read 100 | Hit Shared Shared Shared Shared
P1: write 104 | Hit Shared Invalid Shared Modified
PO:read 100 | Hit Shared Shared Shared Shared
Pl:read 100 | Hit Shared Shared Shared Shared
PO: write 100 | Hit Shared Modified | Shared Invalid
Pl:read 104 | Hit Invalid Invalid Modified | Modified
(b) Repeat the problem for a cache block size of 8 words.
Processor: Hit or miss? | Block's Block’s Block’s Block’s
Instruction state in PO | state in PO | state in P1 | statein
cache cache cache P1 cache
(before) (after) (before) (after)
P0O:read 100 | Hit Shared Shared Shared Shared
P1: write 104 | Hit Shared Invalid Shared Modified
P0O:read 100 | Miss Invalid Shared Modified | Invalid
Pl:read 100 | Miss Shared Shared Invalid Shared
PO: write 100 | Hit Shared Modified | Shared Invalid
Pl:read 104 | Miss Modified | Invalid Invalid Shared

Question 5: Parallel decomposition [10 points].
A message-passing multiprocessor will be used to count the number of zeroes in a
very large array (size N). The array is initially in PO’s memory, and there are 8
processors in total. It takes X cycles to send/receive A array elements, and it takes Y
cycles to do a comparison. Assume that:

* Nisamultiple of A

* Sending fewer than A elements still takes X cycles

* The time to increment the counter is negligible.

(a) What is the algorithm for parallelizing this computation? Number each step.

(1) Send N/8 elements from PO to each of P1..P7
(2) Inparallel, have each processor count the number of elements that
are zero
(3) Reduction tree:
* Inparallel, have each odd-numbered processor Px send its
count to its neighbor P(x-1), and have the neighbor compute a
subtotal
* Inparallel, have P2 send its count to PO and P6 to P4; have PO
and P4 compute subtotals.
* Have P4 send its count to PO, and have PO compute the final
total.

(b) How much time will each step take?

(1) We need to send (N/8) elements from PO to each of 7 processors. It
takes X cycles to send A elements:
7* X * ceil(N/8A)

(2) Each processor must compare each of its N/8 elements to zero. As
stated in the problem, we do not need to worry about the time to
increment the counter. All processors do this step in parallel, so we
only need the time for a single processor to do this step:

Y * (N/8)

(3)For the reduction tree, the amount of time to compute a subtotal is
not specified; full credit was given for either Y or zero cycles. Inany
event, each of the 3 steps of the reduction tree requires one value to
be communicated, which takes X cycles (= X*ceil(1/A)), so the answer
is either
3X or 3(X+Y), depending on your assumptions.

Processor read miss

Invalid
(not valid
cache block)

Shared
(clean)

|

Processor

Processor miss >
read hit

Processor
write hit

Processor write miss Processor

miss
(write dirty
block to
memory)

Modified
(dirty)

Processor read hit
or write hit

a. Cache state transitions using signals from the processor

Invalid
(not valid

cache block) Invalidate or
another processor

has a write miss
for this block
(seen on bus)

Another processor has a read
miss or a write miss for
this block (seen on bus);

write back old block

Modified

(dirty)

b. Cache state transitions using signals from the bus

FIGURE 9.3.4 A write-invalidate cache coherence protocol. Part a of the diagram shows state
transitions based on actions of the processor associated with this cache; part b shows transitions based on
actions of other processors seen as operations on the bus. There is really only one state machine in a cache
block, although there are two represented here to clarify when a transition occurs. The black arrows and
actions specified in black text would be found in caches without coherency; the colored arrows and actions

are added to achieve cache coherency.

10

